19 research outputs found
To dash or to dawdle: verb-associated speed of motion influences eye movements during spoken sentence comprehension
In describing motion events verbs of manner provide information about the speed of agents or objects in those events. We used eye tracking to investigate how inferences about this verb-associated speed of motion would influence the time course of attention to a visual scene that matched an event described in language. Eye movements were recorded as participants heard spoken sentences with verbs that implied a fast (“dash”) or slow (“dawdle”) movement of an agent towards a goal. These sentences were heard whilst participants concurrently looked at scenes depicting the agent and a path which led to the goal object. Our results indicate a mapping of events onto the visual scene consistent with participants mentally simulating the movement of the agent along the path towards the goal: when the verb implies a slow manner of motion, participants look more often and longer along the path to the goal; when the verb implies a fast manner of motion, participants tend to look earlier at the goal and less on the path. These results reveal that event comprehension in the presence of a visual world involves establishing and dynamically updating the locations of entities in response to linguistic descriptions of events
Patterns of Chemical Diversity in the Mediterranean Sponge Spongia lamella
The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern
Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder
© 2016 Nature America, Inc. All rights reserved. We present a new strategy for systematic identification of phosphotyrosine (pTyr) by affinity purification mass spectrometry (AP-MS) using a Src homology 2 (SH2)-domain-derived pTyr superbinder as the affinity reagent. The superbinder allows for markedly deeper coverage of the Tyr phosphoproteome than anti-pTyr antibodies when an optimal amount is used. We identified â 1/420,000 distinct phosphotyrosyl peptides and \u3e10,000 pTyr sites, of which 36% were \u27novel\u27, from nine human cell lines using the superbinder approach. Tyrosine kinases, SH2 domains and phosphotyrosine phosphatases were preferably phosphorylated, suggesting that the toolkit of kinase signaling is subject to intensive regulation by phosphorylation. Cell-type-specific global kinase activation patterns inferred from label-free quantitation of Tyr phosphorylation guided the design of experiments to inhibit cancer cell proliferation by blocking the highly activated tyrosine kinases. Therefore, the superbinder is a highly efficient and cost-effective alternative to conventional antibodies for systematic and quantitative characterization of the tyrosine phosphoproteome under normal or pathological conditions