659 research outputs found

    Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies)

    Get PDF
    Establishment of the shoot apical meristem (SAM) in Arabidopsis embryos requires the KNOXI transcription factor SHOOT MERISTEMLESS. In Norway spruce (Picea abies), four KNOXI family members (HBK1, HBK2, HBK3 and HBK4) have been identified, but a corresponding role in SAM development has not been demonstrated. As a first step to differentiate between the functions of the four Norway spruce HBK genes, we have here analyzed their expression profiles during the process of somatic embryo development. This was made both under normal embryo development and under conditions of reduced SAM formation by treatment with the polar auxin transport inhibitor NPA. Concomitantly with the formation of an embryonic SAM, the HBK2 and HBK4 genes displayed a significant up-regulation that was delayed by NPA treatment. In contrast, HBK1 and HBK3 were up-regulated prior to SAM formation, and their temporal expression was not affected by NPA. Ectopic expression of the four HBK genes in transgenic Arabidopsis plants further supported similar functions of HBK2 and HBK4, distinct from those of HBK1 and HBK3. Together, the results suggest that HBK2 and HBK4 exert similar functions related to the SAM differentiation and somatic embryo development in Norway spruce, while HBK1 and HBK3 have more general functions during embryo development

    Measurements on the reality of the wavefunction

    Full text link
    Quantum mechanics is an outstandingly successful description of nature, underpinning fields from biology through chemistry to physics. At its heart is the quantum wavefunction, the central tool for describing quantum systems. Yet it is still unclear what the wavefunction actually is: does it merely represent our limited knowledge of a system, or is it an element of reality? Recent no-go theorems argued that if there was any underlying reality to start with, the wavefunction must be real. However, that conclusion relied on debatable assumptions, without which a partial knowledge interpretation can be maintained to some extent. A different approach is to impose bounds on the degree to which knowledge interpretations can explain quantum phenomena, such as why we cannot perfectly distinguish non-orthogonal quantum states. Here we experimentally test this approach with single photons. We find that no knowledge interpretation can fully explain the indistinguishability of non-orthogonal quantum states in three and four dimensions. Assuming that some underlying reality exists, our results strengthen the view that the entire wavefunction should be real. The only alternative is to adopt more unorthodox concepts such as backwards-in-time causation, or to completely abandon any notion of objective reality.Comment: 7 pages, 4 figure

    Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression

    Get PDF
    Abstract Background Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitis, emphysema and irreversible airflow limitation. These changes are thought to be due to oxidative stress and an imbalance of proteases and antiproteases. Quercetin, a plant flavonoid, is a potent antioxidant and anti-inflammatory agent. We hypothesized that quercetin reduces lung inflammation and improves lung function in elastase/lipopolysaccharide (LPS)-exposed mice which show typical features of COPD, including airways inflammation, goblet cell metaplasia, and emphysema. Methods Mice treated with elastase and LPS once a week for 4 weeks were subsequently administered 0.5 mg of quercetin dihydrate or 50% propylene glycol (vehicle) by gavage for 10 days. Lungs were examined for elastance, oxidative stress, inflammation, and matrix metalloproteinase (MMP) activity. Effects of quercetin on MMP transcription and activity were examined in LPS-exposed murine macrophages. Results Quercetin-treated, elastase/LPS-exposed mice showed improved elastic recoil and decreased alveolar chord length compared to vehicle-treated controls. Quercetin-treated mice showed decreased levels of thiobarbituric acid reactive substances, a measure of lipid peroxidation caused by oxidative stress. Quercetin also reduced lung inflammation, goblet cell metaplasia, and mRNA expression of pro-inflammatory cytokines and muc5AC. Quercetin treatment decreased the expression and activity of MMP9 and MMP12 in vivo and in vitro, while increasing expression of the histone deacetylase Sirt-1 and suppressing MMP promoter H4 acetylation. Finally, co-treatment with the Sirt-1 inhibitor sirtinol blocked the effects of quercetin on the lung phenotype. Conclusions Quercetin prevents progression of emphysema in elastase/LPS-treated mice by reducing oxidative stress, lung inflammation and expression of MMP9 and MMP12.http://deepblue.lib.umich.edu/bitstream/2027.42/78260/1/1465-9921-11-131.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78260/2/1465-9921-11-131.pdfPeer Reviewe

    A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Significance Analysis of Microarrays (SAM) is a popular method for detecting significantly expressed genes and controlling the false discovery rate (FDR). Recently, it has been reported in the literature that the FDR is not well controlled by SAM. Due to the vast application of SAM in microarray data analysis, it is of great importance to have an extensive evaluation of SAM and its associated R-package (sam2.20).</p> <p>Results</p> <p>Our study has identified several discrepancies between SAM and sam2.20. One major difference is that SAM and sam2.20 use different methods for estimating FDR. Such discrepancies may cause confusion among the researchers who are using SAM or are developing the SAM-like methods. We have also shown that SAM provides no meaningful estimates of FDR and this problem has been corrected in sam2.20 by using a different formula for estimating FDR. However, we have found that, even with the improvement sam2.20 has made over SAM, sam2.20 may still produce erroneous and even conflicting results under certain situations. Using an example, we show that the problem of sam2.20 is caused by its use of asymmetric cutoffs which are due to the large variability of null scores at both ends of the order statistics. An obvious approach without the complication of the order statistics is the conventional symmetric cutoff method. For this reason, we have carried out extensive simulations to compare the performance of sam2.20 and the symmetric cutoff method. Finally, a simple modification is proposed to improve the FDR estimation of sam2.20 and the symmetric cutoff method.</p> <p>Conclusion</p> <p>Our study shows that the most serious drawback of SAM is its poor estimation of FDR. Although this drawback has been corrected in sam2.20, the control of FDR by sam2.20 is still not satisfactory. The comparison between sam2.20 and the symmetric cutoff method reveals that the relative performance of sam2.20 to the symmetric cutff method depends on the ratio of induced to repressed genes in a microarray data, and is also affected by the ratio of DE to EE genes and the distributions of induced and repressed genes. Numerical simulations show that the symmetric cutoff method has the biggest advantage over sam2.20 when there are equal number of induced and repressed genes (i.e., the ratio of induced to repressed genes is 1). As the ratio of induced to repressed genes moves away from 1, the advantage of the symmetric cutoff method to sam2.20 is gradually diminishing until eventually sam2.20 becomes significantly better than the symmetric cutoff method when the differentially expressed (DE) genes are either all induced or all repressed genes. Simulation results also show that our proposed simple modification provides improved control of FDR for both sam2.20 and the symmetric cutoff method.</p

    Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust

    Get PDF
    BACKGROUND: In mice, the cytokine interleukin (IL)-17A causes a local accumulation of neutrophils within the bronchoalveolar space. IL-17A may thereby also contribute to an increased local proteolytic burden. In the current study, we determined whether mRNA for IL-17A is elevated and protein expression of IL-17A occurs locally in inflammatory cells within the human bronchoalveolar space during severe inflammation caused by organic dust. We also assessed the expression of the elastinolytic protease MMP-9 in this airway compartment. METHODS: Six healthy, non-smoking human volunteers were exposed to organic dust in a swine confinement, a potent stimulus of neutrophil accumulation within the human bronchoalveolar space. Bronchoalveolar lavage (BAL) fluid was harvested 2 weeks before and 24 hours after the exposure and total and differential counts were conducted for inflammatory BAL cells. Messenger RNA for IL-17A was measured using reverse transcript polymerase chain reaction-enzyme linked immunoassay (RT-PCR-ELISA). Intracellular immunoreactivity (IR) for IL-17A and MMP-9, respectively, was determined in BAL cells. RESULTS: The exposure to organic dust caused more than a forty-fold increase of mRNA for IL-17A in BAL cells. IL-17A immunoreactivity was detected mainly in BAL lymphocytes, and the number of these IL-17A expressing lymphocytes displayed an eight-fold increase, even though not statistically significant. The increase in IL-17A mRNA was associated with a substantial increase of the number of BAL neutrophils expressing MMP-9 immunoreactivity. CONCLUSION: Exposure to organic dust increases local IL-17A mRNA and because there is intracellular expression in BAL lymphocytes, this suggests that IL-17A protein can originate from lymphocytes within the human bronchoalveolar space. The fact that the increased IL-17A mRNA is associated with an increased number of MMP-9-expressing neutrophils is compatible with IL-17A increasing the local proteolytic burden through its neutrophil-accumulating effect

    Measuring care of the elderly: psychometric testing and modification of the Time in Care instrument for measurement of care needs in nursing homes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aging entails not only a decrease in the ability to be active, but also a trend toward increased dependence to sustain basic life functions. An important aspect for appropriately elucidating the individual's care needs is the ability to measure them both simply and reliably. Since 2006 a new version of the Time in Care needs (TIC-n) instrument (19-item version) has been explored and used in one additional municipality with the same structure as the one described in an earlier study.</p> <p>Methods</p> <p>The TIC-n assessment was conducted on a total of 1282 care recipients. Factor analysis (principal component) was applied to explore the construct validity of the TIC-n. Cronbach's alpha was calculated to test reliability and for each of the items remaining in the instrument after factor analysis, an inter-rater comparison was carried out on all recipients in both municipalities. Independently of each other, a weighted Kappa (K<sub>w</sub>) was calculated. Results. The mean of each weighted Kappa (K<sub>w</sub>) for the dimensions in the two municipalities was 0.75 and 0.76, respectively. Factor analysis showed that all 19 items had a factor loading of ≥ 0.40. Three factors (General Care, Medical Care and Cognitive Care) were created.</p> <p>Conclusion</p> <p>The TIC-n instrument has now been tested for validity and reliability in two municipalities with satisfactory results. However, TIC-n can not yet be used as a golden standard, but it can be recommended for use of measurement of individual care needs in municipal elderly care.</p

    Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles

    Get PDF
    Acquired drug resistance is a major problem in cancer treatment. To explore the genes involved in chemosensitivity and resistance, 10 human tumour cell lines, including parental cells and resistant subtypes selected for resistance against doxorubicin, melphalan, teniposide and vincristine, were profiled for mRNA expression of 7400 genes using cDNA microarray technology. The drug activity of 66 cancer agents was evaluated on the cell lines, and correlations between drug activity and gene expression were calculated and ranked. Hierarchical clustering of drugs based on their drug–gene correlations yielded clusters of drugs with similar mechanism of action. Genes correlated with drug sensitivity and resistance were imported into the PathwayAssist software to identify putative molecular pathways involved. A substantial number of both proapoptotic and antiapoptotic genes such as signal transducer and activator of transcription 1, mitogen-activated protein kinase 1 and focal adhesion kinase were found to be associated to drug resistance, whereas genes linked to cell cycle control and proliferation, such as cell division cycle 25A and signal transducer of activator of transcription 5A, were associated to general drug sensitivity. The results indicate that combined information from drug activity and gene expression in a resistance-based cell line panel may provide new knowledge of the genes involved in anticancer drug resistance and become a useful tool in drug development
    corecore