35 research outputs found

    Development and Validation of a Surgical Workload Measure: The Surgery Task Load Index (SURG-TLX)

    Get PDF
    Background: The purpose of the present study was to develop and validate a multidimensional, surgery-specific workload measure (the SURG-TLX), and to determine its utility in providing diagnostic information about the impact of various sources of stress on the perceived demands of trained surgical operators. As a wide range of stressors have been identified for surgeons in the operating room, the current approach of considering stress as a unidimensional construct may not only limit the degree to which underlying mechanisms may be understood but also the degree to which training interventions may be successfully matched to particular sources of stress. Methods: The dimensions of the SURG-TLX were based on two current multidimensional workload measures and developed via focus group discussion. The six dimensions were defined as mental demands, physical demands, temporal demands, task complexity, situational stress, and distractions. Thirty novices were trained on the Fundamentals of Laparoscopic Surgery (FLS) peg transfer task and then completed the task under various conditions designed to manipulate the degree and source of stress experienced: task novelty, physical fatigue, time pressure, evaluation apprehension, multitasking, and distraction. Results: The results were supportive of the discriminant sensitivity of the SURG-TLX to different sources of stress. The sub-factors loaded on the relevant stressors as hypothesized, although the evaluation pressure manipulation was not strong enough to cause a significant rise in situational stress. Conclusions: The present study provides support for the validity of the SURG-TLX instrument and also highlights the importance of considering how different stressors may load surgeons. Implications for categorizing the difficulty of certain procedures, the implementation of new technology in the operating room (man-machine interface issues), and the targeting of stress training strategies to the sources of demand are discussed. Modifications to the scale to enhance clinical utility are also suggested. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    A pilot study of heart rate variability biofeedback therapy in the treatment of perinatal depression on a specialized perinatal psychiatry inpatient unit

    No full text
    PURPOSE: Heart rate variability biofeedback (HRVB) therapy may be useful in treating the prominent anxiety features of perinatal depression. We investigated the use of this non-pharmacologic therapy among women hospitalized with severe perinatal depression. METHODS: Three questionnaires, the State Trait Anxiety Inventory (STAI), Warwick Edinburgh Mental Well-Being Scale (WEMWBS), and Linear Analog Self Assessment (LASA), were administered to fifteen women in a specialized inpatient perinatal psychiatry unit. Participants were also contacted by telephone after discharge to assess continued use of HRVB techniques. RESULTS: The use of HRVB was associated with an improvement in all three scales. The greatest improvement (−13.867, p<0.001 and −11.533, p<0.001) was among STAI scores. A majority (81.9%, n=9) of women surveyed by telephone also reported continued frequent use at least once per week, and over half (54.6%, n=6) described the use of HRVB techniques as very or extremely beneficial. CONCLUSIONS: The use of HRVB was associated with statistically significant improvement on all instrument scores, the greatest of which was STAI scores, and most women reported frequent continued use of HRVB techniques after discharge. These results suggest that HRVB may be particularly beneficial in the treatment of the prominent anxiety features of perinatal depression, both in inpatient and outpatient settings

    Changes in pCO2, symptoms, and lung function of asthma patients during capnometry-assisted breathing training

    No full text
    In a recent pilot study with asthma patients we demonstrated beneficial outcomes of a breathing training using capnometry biofeedback and paced breathing assistance to increase pCO(2) levels and reduce hyperventilation. Here we explored the time course changes in pCO(2), respiration rate, symptoms and lung function across treatment weeks, in order to determine how long training needs to continue. We analyzed in eight asthma patients whether gains in pCO(2) and reductions in respiration rate achieved in home exercises with paced breathing tapes followed a linear trend across the 4-week treatment period. We also explored the extent to which gains at home were manifest in weekly training sessions in the clinic, in terms of improvement in symptoms and spirometric lung function. The increases in pCO(2) and respiration rate were linear across treatment weeks for home exercises. Similar increases were seen for in-session measurements, together with gradual decreases in symptoms from week to week. Basal lung function remained stable throughout treatment. With our current protocol of paced breathing and capnometry-assisted biofeedback at least 4 weeks are needed to achieve a normalization of pCO(2) levels and reduction in symptoms in asthma patients
    corecore