10 research outputs found

    Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Get PDF
    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact

    Rab11-FIP3 and FIP4 interact with Arf6 and the Exocyst to control membrane traffic in cytokinesis

    No full text
    The dual Rab11/Arf binding proteins, family of Rab11-interacting proteins FIP3 and FIP4 function in the delivery of recycling endosomes to the cleavage furrow and are, together with Rab11, essential for completion of abscission, the terminal step of cytokinesis. Here, we report that both FIP3 and FIP4 bind Arf6 in a nucleotide-dependent manner but exhibit differential affinities for Rab11 and Arf6. Both FIP3 and FIP4 can form ternary complexes with Rab11 and Arf6. Arf6 is localised to the furrow and midbody and we show that Arf6-GTP functions to localise FIP3 and FIP4 to midbodies during cytokinesis. Exo70p, a component of the Exocyst complex, also localises to the furrow of dividing cells and interacts with Arf6. We show that depletion of Exo70p leads to cytokinesis failure and an impairment of FIP3 and Rab11 localisation to the furrow and midbody. Moreover, Exo70p co-immunoprecipitates FIP3 and FIP4. Hence, we propose that FIP3 and FIP4 serve to couple Rab11-positive vesicle traffic from recycling endosomes to the cleavage furrow/midbody where they are tethered prior to fusion events via interactions with Arf6 and the Exocyst
    corecore