99 research outputs found
Impact of metabolic comorbidity on the association between body mass index and heatlh-related quality of life: a Scotland-wide cross-sectional study of 5,608 participants
<p/>Background: The prevalence of obesity is rising in Scotland and globally. Overall, obesity is associated with increased morbidity, mortality and reduced health-related quality of life. Studies suggest that "healthy obesity" (obesity without metabolic comorbidity) may not be associated with morbidity or mortality. Its impact on health-related quality of life is unknown.
<p/>Methods: We extracted data from the Scottish Health Survey on self-reported health-related quality of life, body mass index (BMI), demographic information and comorbidity. SF-12 responses were converted into an overall health utility score. Linear regression analyses were used to explore the association between BMI and health utility, stratified by the presence or absence of metabolic comorbidity (diabetes, hypertension, hypercholesterolemia or cardiovascular disease), and adjusted for potential confounders (age, sex and deprivation quintile).
<p/>Results: Of the 5,608 individuals, 3,744 (66.8%) were either overweight or obese and 921 (16.4%) had metabolic comorbidity. There was an inverted U-shaped relationship whereby health utility was highest among overweight individuals and fell with increasing BMI. There was a significant interaction with metabolic comorbidity (p = 0.007). Individuals with metabolic comorbidty had lower utility scores and a steeper decline in utility with increasing BMI (morbidly obese, adjusted coefficient: -0.064, 95% CI -0.115, -0.012, p = 0.015 for metabolic comorbidity versus -0.042, 95% CI -0.067, -0.018, p = 0.001 for no metabolic comorbidity).
<p/>Conclusions: The adverse impact of obesity on health-related quality of life is greater among individuals with metabolic comorbidity. However, increased BMI is associated with reduced health-related quality of life even in the absence of metabolic comorbidity, casting doubt on the notion of "healthy obesity"
A deletion of FGFR2 creating a chimeric IIIb/IIIc exon in a child with Apert syndrome
<p>Abstract</p> <p>Background</p> <p>Signalling by fibroblast growth factor receptor type 2 (FGFR2) normally involves a tissue-specific alternative splice choice between two exons (IIIb and IIIc), which generates two receptor isoforms (FGFR2b and FGFR2c respectively) with differing repertoires of FGF-binding specificity. Here we describe a unique chimeric IIIb/c exon in a patient with Apert syndrome, generated by a non-allelic homologous recombination event.</p> <p>Case Presentation</p> <p>We present a child with Apert syndrome in whom routine genetic testing had excluded the <it>FGFR2 </it>missense mutations commonly associated with this disorder. The patient was found to harbour a heterozygous 1372 bp deletion between <it>FGFR2 </it>exons IIIb and IIIc, apparently originating from recombination between 13 bp of identical DNA sequence present in both exons. The rearrangement was not present in the unaffected parents.</p> <p>Conclusions</p> <p>Based on the known pathogenesis of Apert syndrome, the chimeric FGFR2 protein is predicted to act in a dominant gain-of-function manner. This is likely to result from its expression in mesenchymal tissues, where retention of most of the residues essential for FGFR2b binding activity would result in autocrine activation. This report adds to the repertoire of rare cases of Apert syndrome for which a pathogenesis based on atypical <it>FGFR2 </it>rearrangements can be demonstrated.</p
Effectiveness and cost-effectiveness of an educational intervention for practice teams to deliver problem focused therapy for insomnia: rationale and design of a pilot cluster randomised trial
Background: Sleep problems are common, affecting over a third of adults in the United Kingdom and leading to reduced productivity and impaired health-related quality of life. Many of those whose lives are affected seek medical help from primary care. Drug treatment is ineffective long term. Psychological methods for managing sleep problems, including cognitive behavioural therapy for insomnia (CBTi) have been shown to be effective and cost effective but have not been widely implemented or evaluated in a general practice setting where they are most likely to be needed and
most appropriately delivered. This paper outlines the protocol for a pilot study designed to
evaluate the effectiveness and cost-effectiveness of an educational intervention for general practitioners, primary care nurses and other members of the primary care team to deliver problem focused therapy to adult patients presenting with sleep problems due to lifestyle causes, pain or mild to moderate depression or anxiety.
Methods and design: This will be a pilot cluster randomised controlled trial of a complex intervention. General practices will be randomised to an educational intervention for problem focused therapy which includes a consultation approach comprising careful assessment (using assessment of secondary causes, sleep diaries and severity) and use of modified CBTi for insomnia in the consultation compared with usual care (general advice on sleep hygiene and pharmacotherapy with hypnotic drugs). Clinicians randomised to the intervention will receive an educational intervention (2 × 2 hours) to implement a complex intervention of problem focused therapy. Clinicians randomised to the control group will receive reinforcement of usual care with sleep hygiene advice. Outcomes will be assessed via self-completion questionnaires and telephone
interviews of patients and staff as well as clinical records for interventions and prescribing.
Discussion: Previous studies in adults have shown that psychological treatments for insomnia administered by specialist nurses to groups of patients can be effective within a primary care setting. This will be a pilot study to determine whether an educational intervention aimed at primary care teams to deliver problem focused therapy for insomnia can improve sleep management and outcomes for individual adult patients presenting to general practice. The study will also test procedures and collect information in preparation for a larger definitive cluster-randomised trial. The study is funded by The Health Foundation
FMRFamide-Like Peptides (FLPs) Enhance Voltage-Gated Calcium Currents to Elicit Muscle Contraction in the Human Parasite Schistosoma mansoni
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway
JTE-522, a selective COX-2 inhibitor, inhibits growth of pulmonary metastases of colorectal cancer in rats
BACKGROUND: Epidemiological studies have shown that individuals who regularly consume NSAIDs have lower rates of mortality associated with colorectal cancer. Because COX-2 inhibitors prevent tumor growth through some mechanisms, we assessed the effect of JTE-522, a selective COX-2 inhibitor, on pulmonary metastases of colon cancer in a rat model. METHODS: A suspension of 5 × 10(6 )RCN-9 (rat colon cancer cells) was injected into the tail vein of 24 anesthetized male F344/DuCrj rats. Oral JTE-522 (0, 3, 10, or 30 mg/kg/day) was administered from the day before RCN-9 injection until the end of the study. Twenty-four days later, the lungs were removed from sacrificed rats and weighed. Pulmonary metastatic tumors were microscopically evaluated in the largest cross sections. We also performed immunohistochemical staining for both COX-2 and VEGF. RESULTS: JTE-522 dose-dependently decreased lung weight (p = 0.001) and the size of pulmonary metastatic tumors (p = 0.0002). However, the differences in the number of metastatic tumors among 4 groups were insignificant. Significant adverse effects of JTE-522 were undetectable. Immunohistochemical staining showed high levels of both COX-2 and VEGF in pulmonary metastatic tumors. CONCLUSION: JTE-522 dose-dependently decreased the size, but not the number of pulmonary metastases. COX-2 inhibitors might block metastatic tumor growth, but not actual metastasis. Selective COX-2 inhibitors might be useful as therapeutic agents that inhibit the growth of metastatic tumors, as well as the tumorigenesis of colorectal cancer
Oral Delivery of the Sj23LHD-GST Antigen by Salmonella typhimurium Type III Secretion System Protects against Schistosoma japonicum Infection in Mice
Schistosomiasis japonica is a zoonotic parasitic disease and occurs predominantly in Southeast Asia and China. Using a simple, cheap, yet efficient oral method to deliver the vaccine antigen would benefit to control its transmission in that the oral vaccine could be made into a preparation and mixed with feedstuffs of livestock hosts. In this study, we used an attenuated S. typhimurium strain VNP20009, whose safety has been demonstrated in phase I clinical trial, to express the bivalent Schistosoma japonicum antigen Sj23LHD-GST by an intracellular activated promoter (nirB) and deliver it to host cells through type III secretion system. After oral vaccination of this recombinant strain, efficient protection against S. japonicum challenge was induced in mice. Mean while, granuloma formation in the liver was improved significantly in the immunized mice. This protective immune response was Th1 specific type as evidenced by increase in the production of IL-12 and IFN-γ. This work provides an alternative S. japonicum vaccine for livestock and humans
Structural and Functional Analysis of Phytotoxin Toxoflavin-Degrading Enzyme
Pathogenic bacteria synthesize and secrete toxic low molecular weight compounds as virulence factors. These microbial toxins play essential roles in the pathogenicity of bacteria in various hosts, and are emerging as targets for antivirulence strategies. Toxoflavin, a phytotoxin produced by Burkholderia glumae BGR1, has been known to be the key factor in rice grain rot and wilt in many field crops. Recently, toxoflavin-degrading enzyme (TxDE) was identified from Paenibacillus polymyxa JH2, thereby providing a possible antivirulence strategy for toxoflavin-mediated plant diseases. Here, we report the crystal structure of TxDE in the substrate-free form and in complex with toxoflavin, along with the results of a functional analysis. The overall structure of TxDE is similar to those of the vicinal oxygen chelate superfamily of metalloenzymes, despite the lack of apparent sequence identity. The active site is located at the end of the hydrophobic channel, 9 Å in length, and contains a Mn(II) ion interacting with one histidine residue, two glutamate residues, and three water molecules in an octahedral coordination. In the complex, toxoflavin binds in the hydrophobic active site, specifically the Mn(II)-coordination shell by replacing a ligating water molecule. A functional analysis indicated that TxDE catalyzes the degradation of toxoflavin in a manner dependent on oxygen, Mn(II), and the reducing agent dithiothreitol. These results provide the structural features of TxDE and the early events in catalysis
Bioactivity of miltefosine against aquatic stages of Schistosoma mansoni, Schistosoma haematobium and their snail hosts, supported by scanning electron microscopy
<p>Abstract</p> <p>Background</p> <p>Miltefosine, which is the first oral drug licensed for the treatment of leishmaniasis, was recently reported to be a promising lead compound for the synthesis of novel antischistosomal derivatives with potent activity <it>in vivo </it>against different developmental stages of <it>Schistosoma mansoni</it>. In this paper an <it>in vitro </it>study was carried out to investigate whether it has a biocidal activity against the aquatic stages of <it>Schistosoma mansoni </it>and its snail intermediate host, <it>Biomphalaria alexandrina </it>, thus being also a molluscicide. Additionally, to see whether miltefosine can have a broad spectrum antischistosomal activity, a similar <it>in vitro </it>study was carried out on the adult stage of <it>Schistosoma haematobium</it>, the second major human species, its larval stages and snail intermediate host, <it>Bulinus truncutes</it>. This was checked by scanning electron microscopy.</p> <p>Results</p> <p>Miltefosine proved to have <it>in vitro </it>ovicidal, schistolarvicidal and lethal activity on adult worms of both <it>Schistosoma </it>species and has considerable molluscicidal activity on their snail hosts. Scanning electron microscopy revealed several morphological changes on the different stages of the parasite and on the soft body of the snail, which further strengthens the current evidence of miltefosine's activity. This is the first report of mollusicidal activity of miltefosine and its <it>in vitro </it>schistosomicidal activity against <it>S.haematobium</it>.</p> <p>Conclusions</p> <p>This study highlights miltefosine not only as a potential promising lead compound for the synthesis of novel broad spectrum schistosomicidal derivatives, but also for molluscicidals.</p
- …