13 research outputs found

    Catalyst characteristics and performance of silica-supported zinc for hydrodeoxygenation of phenol

    No full text
    The present investigation aimed to study the physicochemical characteristics of supported catalysts comprising various percentages of zinc dispersed over SiO2. The physiochemical properties of these catalysts were surveyed by N2physisorption (BET), thermogravimetry analysis (TGA), H2temperature-programmed reduction, field-emission scanning electron microscopy (FESEM), inductively coupled plasma-optical emission spectrometry (ICP-OES), and NH3temperature-programmed desorption (NH3-TPD). In addition, to examine the activity and performance of the catalysts for the hydrodeoxygenation (HDO) of the bio-oil oxygenated compounds, the experimental reaction runs, as well as stability and durability tests, were performed using 3% Zn/SiO2as the catalyst. Characterization of silica-supported zinc catalysts revealed an even dispersion of the active site over the support in the various dopings of the zinc. The acidity of the calcinated catalysts elevated clearly up to 0.481 mmol/g. Moreover, characteristic outcomes indicate that elevating the doping of zinc metal led to interaction and substitution of proton sites on the SiO2surface that finally resulted in an increase in the desorption temperature peak. The experiments were performed at temperature 500 °C, pressure 1 atm; weight hourly space velocity (WHSV) 0.32 (h-1); feed flow rate 0.5 (mL/min); and hydrogen flow rate 150 (mL/min). Based on the results, it was revealed that among all the prepared catalysts, that with 3% of zinc had the highest conversion efficiency up to 80%. However, the selectivity of the major products, analyzed by gas chromatography flame-ionization detection (GC-FID), was not influenced by the variation in the active site doping

    Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption

    No full text
    Soraya Hosseini,1 Hossein Jahangirian,2 Thomas J Webster,2 Salman Masoudi Soltani,3 Mohamed Kheireddine Aroua1 1Department of Chemical Engineering, University of Malaya, Kuala Lumpur, Malaysia; 2Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 3Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK Abstract: Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol–gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV–visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm-2 at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm-2 from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photo­anodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal. Keywords: renewable energy, photocatalysis, mesoporous carbon, TiO2 nanoparticle, multilayer photoelectrode, humic aci
    corecore