24 research outputs found

    Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study

    Get PDF
    Background: The strategy of watch and wait (W&W) in patients with rectal cancer who achieve a complete clinical response (cCR) after neoadjuvant therapy is new and offers an opportunity for patients to avoid major resection surgery. However, evidence is based on small-to-moderate sized series from specialist centres. The International Watch & Wait Database (IWWD) aims to describe the outcome of the W&W strategy in a large-scale registry of pooled individual patient data. We report the results of a descriptive analysis after inclusion of more than 1000 patients in the registry. Methods: Participating centres entered data in the registry through an online, highly secured, and encrypted research data server. Data included baseline characteristics, neoadjuvant therapy, imaging protocols, incidence of local regrowth and distant metastasis, and survival status. All patients with rectal cancer in whom the standard of care (total mesorectal excision surgery) was omitted after neoadjuvant therapy were eligible to be included in the IWWD. For the present analysis, we only selected patients with no signs of residual tumour at reassessment (a cCR). We analysed the proportion of patients with local regrowth, proportion of patients with distant metastases, 5-year overall survival, and 5-year disease-specific survival. Findings: Between April 14, 2015, and June 30, 2017, we identified 1009 patients who received neoadjuvant treatment and were managed by W&W in the database from 47 participating institutes (15 countries). We included 880 (87%) patients with a cCR. Median follow-up time was 3·3 years (95% CI 3·1–3·6). The 2-year cumulative incidence of local regrowth was 25·2% (95% CI 22·2–28·5%), 88% of all local regrowth was diagnosed in the first 2 years, and 97% of local regrowth was located in the bowel wall. Distant metastasis were diagnosed in 71 (8%) of 880 patients. 5-year overall survival was 85% (95% CI 80·9–87·7%), and 5-year disease-specific survival was 94% (91–96%). Interpretation: This dataset has the largest series of patients with rectal cancer treated with a W&W approach, consisting of approximately 50% data from previous cohort series and 50% unpublished data. Local regrowth occurs mostly in the first 2 years and in the bowel wall, emphasising the importance of endoscopic surveillance to ensure the option of deferred curative surgery. Local unsalvageable disease after W&W was rare. Funding: European Registration of Cancer Care financed by European Society of Surgical Oncology, Champalimaud Foundation Lisbon, Bas Mulder Award granted by the Alpe d'Huzes Foundation and Dutch Cancer Society, and European Research Council Advanced Grant

    Biomarker expression in rectal cancer tissue before and after neoadjuvant therapy

    No full text
    Leonora SF Boogerd,1 Maxime JM van der Valk,1 Martin C Boonstra,1 Hendrica AJM Prevoo,1 Denise E Hilling,1 Cornelis JH van de Velde,1 Cornelis FM Sier,1 Arantza Fariña Sarasqueta,2 Alexander L Vahrmeijer1 1Department of Surgery, 2Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands Purpose: Intraoperative identification of rectal cancer (RC) can be challenging, especially because of fibrosis after treatment with preoperative chemo- and radiotherapy (CRT). Tumor-targeted fluorescence imaging can enhance the contrast between tumor and normal tissue during surgery. Promising targets for RC imaging are carcinoembryonic antigen (CEA), epithelial cell adhesion molecule (EpCAM) and the tyrosine-kinase receptor Met (c-Met). The effect of CRT on their expression determines their applicability for imaging. Therefore, we investigated whether CRT modifies expression patterns in tumors, lymph node (LN) metastases and adjacent normal rectal tissues. Patients and methods: Preoperative biopsies, primary tumor specimens and metastatic LNs were collected from 38 RC patients who did not receive CRT (cohort 1) and 34 patients who did (cohort 2). CEA, EpCAM and c-Met expression was determined using immunohistochemical staining and was semiquantified by a total immunostaining score (TIS), consisting of the percentage and intensity of stained tumor cells (0–12). Results: In both cohorts CEA, EpCAM and c-Met were significantly highly expressed in >60% of tumor tissues compared with adjacent normal epithelium (T/N ratio, P<0.01). EpCAM showed the most homogenous expression in tumors, whereas CEA showed the highest T/N ratio. Most importantly, CEA and EpCAM expression did not significantly change in normal or neoplastic RC tissue after CRT, whereas levels of c-Met changed (P=0.02). Tissues of eight patients with a pathological complete response after CRT showed expression of all biomarkers with TIS close to normal epithelium. Conclusion: Histological evaluation shows that CEA, EpCAM and c-Met are suitable targets for RC imaging, because all three are significantly enhanced in cancer tissue from primary tumors or LN metastases compared with normal adjacent tissue. Furthermore, the expression of CEA and EpCAM is not significantly changed after CRT. These data underscore the applicability of c-Met and especially, CEA and EpCAM as targets for image-guided RC surgery, both before and after CRT. Keywords: imaging, tumor markers, CEA, EpCAM, c-Met, preoperative chemo- and radiotherap

    Introduction:Preoperative staging by imaging

    No full text
    In recent decades, the role of imaging in the local staging of rectal cancer has evolved. Whereas in the past, its role has been restricted mainly to endorectal ultrasound, it has recently extended to modern imaging such as CT and MRI. This chapter on "imaging and staging" will address the two most frequently used imaging methods in rectal cancer management: endorectal ultrasound (EUS) and magnetic resonance imaging (MRI). For each, experts in the field will elaborate on how these methods can identify the relevant risk factors for local recurrence and which protocol should be used to ensure a high-quality performance. In this section, the introduction, a helicopter view is given on the role of each method, EUS and MRI, in the context of clinical decision-making and its role put in perspective of one another. The introduction finalizes with recommendations for use in clinical practice
    corecore