903 research outputs found

    The contribution of missense mutations in core and rim residues of protein-protein interfaces to human disease.

    Get PDF
    AbstractMissense mutations at protein–protein interaction sites, called interfaces, are important contributors to human disease. Interfaces are non-uniform surface areas characterized by two main regions, “core” and “rim”, which differ in terms of evolutionary conservation and physicochemical properties. Moreover, within interfaces, only a small subset of residues (“hot spots”) is crucial for the binding free energy of the protein–protein complex.We performed a large-scale structural analysis of human single amino acid variations (SAVs) and demonstrated that disease-causing mutations are preferentially located within the interface core, as opposed to the rim (p<0.01). In contrast, the interface rim is significantly enriched in polymorphisms, similar to the remaining non-interacting surface. Energetic hot spots tend to be enriched in disease-causing mutations compared to non-hot spots (p=0.05), regardless of their occurrence in core or rim residues. For individual amino acids, the frequency of substitution into a polymorphism or disease-causing mutation differed to other amino acids and was related to its structural location, as was the type of physicochemical change introduced by the SAV.In conclusion, this study demonstrated the different distribution and properties of disease-causing SAVs and polymorphisms within different structural regions and in relation to the energetic contribution of amino acid in protein–protein interfaces, thus highlighting the importance of a structural system biology approach for predicting the effect of SAVs

    Divergent Biochemical Fractionation, Not Convergent Temperature, Explains Cellulose Oxygen Isotope Enrichment across Latitudes

    Get PDF
    Recent findings based on the oxygen isotope ratios of tree trunk cellulose indicate that the temperature of biomass production in biomes ranging from boreal to subtropical forests converge to an average leaf temperature of 21.4°C. The above conclusion has been drawn under the assumption that biochemically related isotopic fractionations during cellulose synthesis are not affected by temperature. Here we test the above assumption by heterotrophically generating cellulose at different temperatures and measuring the proportion of carbohydrate oxygen that exchange with water during cellulose synthesis and the average biochemical fractionation associated with this exchange. We observed no variation in the proportion of oxygen that exchange with different temperatures, which averaged 0.42 as it has been observed in other studies. On the other hand, the biochemical oxygen isotope fractionation during cellulose synthesis is affected by temperature and can be described by a 2nd order polynomial equation. The biochemical fractionation changes little between temperatures of 20 and 30°C averaging 26‰ but increases at lower temperatures to values of 31‰. This temperature sensitive biochemical fractionation explains the pattern of cellulose oxygen isotope ratios of aquatic plants encompassing several latitudes. The observed temperature sensitive biochemical fractionation also indicates that divergent biochemical fractionation and not convergent leaf temperature explains the increase in oxygen isotope enrichment of cellulose across several biomes

    Photodissociation and the Morphology of HI in Galaxies

    Full text link
    Young massive stars produce Far-UV photons which dissociate the molecular gas on the surfaces of their parent molecular clouds. Of the many dissociation products which result from this ``back-reaction'', atomic hydrogen \HI is one of the easiest to observe through its radio 21-cm hyperfine line emission. In this paper I first review the physics of this process and describe a simplified model which has been developed to permit an approximate computation of the column density of photodissociated \HI which appears on the surfaces of molecular clouds. I then review several features of the \HI morphology of galaxies on a variety of length scales and describe how photodissociation might account for some of these observations. Finally, I discuss several consequences which follow if this view of the origin of HI in galaxies continues to be successful.Comment: 18 pages, 7 figures in 8 files, invited review paper for the conference "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", South Africa, June 2004. Proceedings to be published by Kluwer, eds. D.L. Block, K.C. Freeman, I. Puerari, R. Groess, & E.K. Bloc

    Generation of Long Insert Pairs Using a Cre-LoxP Inverse PCR Approach

    Get PDF
    Large insert mate pair reads have a major impact on the overall success of de novo assembly and the discovery of inherited and acquired structural variants. The positional information of mate pair reads generally improves genome assembly by resolving repeat elements and/or ordering contigs. Currently available methods for building such libraries have one or more of limitations, such as relatively small insert size; unable to distinguish the junction of two ends; and/or low throughput. We developed a new approach, Cre-LoxP Inverse PCR Paired-End (CLIP-PE), which exploits the advantages of (1) Cre-LoxP recombination system to efficiently circularize large DNA fragments, (2) inverse PCR to enrich for the desired products that contain both ends of the large DNA fragments, and (3) the use of restriction enzymes to introduce a recognizable junction site between ligated fragment ends and to improve the self-ligation efficiency. We have successfully created CLIP-PE libraries up to 22 kb that are rich in informative read pairs and low in small fragment background. These libraries have demonstrated the ability to improve genome assemblies. The CLIP-PE methodology can be implemented with existing and future next-generation sequencing platforms

    Socioeconomic Predictors of Cognition in Ugandan Children: Implications for Community Interventions

    Get PDF
    Background: Several interventions to improve cognition in at risk children have been suggested. Identification of key variables predicting cognition is necessary to guide these interventions. This study was conducted to identify these variables in Ugandan children and guide such interventions. Methods: A cohort of 89 healthy children (45 females) aged 5 to 12 years old were followed over 24 months and had cognitive tests measuring visual spatial processing, memory, attention and spatial learning administered at baseline, 6 months and 24 months. Nutritional status, child’s educational level, maternal education, socioeconomic status and quality of the home environment were also measured at baseline. A multivariate, longitudinal model was then used to identify predictors of cognition over the 24 months. Results: A higher child’s education level was associated with better memory (p = 0.03), attention (p = 0.005) and spatial learning scores over the 24 months (p = 0.05); higher nutrition scores predicted better visual spatial processing (p = 0.002) and spatial learning scores (p = 0.008); and a higher home environment score predicted a better memory score (p = 0.03). Conclusion: Cognition in Ugandan children is predicted by child’s education, nutritional status and the home environment

    A case-control study of the HER2 Ile655Val polymorphism in relation to risk of invasive breast cancer

    Get PDF
    BACKGROUND: Overexpression of the HER2 proto-oncogene in human cancer cells has been associated with a poor prognosis, and survival improves with therapy targeting the HER2 gene. Animal studies and protein modeling suggest that the Ile655Val polymorphism located in the transmembrane domain of the HER2 protein might influence breast cancer development by altering the efficiency of homodimerization. METHODS: To investigate this genetic polymorphism, incident cases of invasive breast cancer (N = 1,094) and population controls of a similar age (N = 976) were interviewed during 2001 to 2003 regarding their risk factors for breast cancer. By using DNA collected from buccal samples mailed by the participants, the HER2 Ile655Val polymorphism was evaluated with the Applied Biosystems allelic discrimination assay. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were estimated by logistic regression adjusted for numerous breast cancer risk factors. Analysis was restricted to women with self-reported European descent. RESULTS: Prevalence of the Val/Val genotype was 5.6% in cases and 7.1% in controls. In comparison with the Ile/Ile genotype, the Ile/Val genotype was not significantly associated with breast cancer risk (OR 0.97, 95% CI 0.79 to 1.18), whereas the Val/Val genotype was associated with a reduced risk (OR 0.63, 95% CI 0.42 to 0.92). This inverse association seemed strongest in older women (OR 0.51, 95% CI 0.29 to 0.89 for women aged more than 55 years), women without a family history of breast cancer (OR 0.54, 95% CI 0.35 to 0.84), postmenopausal women with greater body mass index (OR 0.43, 95% CI 0.20 to 0.91 for a body mass index of 25.3 kg/m(2 )or more), and cases diagnosed with non-localized breast cancer (OR 0.49, 95% CI 0.26 to 0.90). CONCLUSION: Although results from our population-based case-control study show an inverse association between the HER2 Ile655Val polymorphism and risk of invasive breast cancer, most other studies of this single-nucleotide polymorphism suggest an overall null association. Any further study of this polymorphism should involve sample populations with complete risk factor information and sufficient power to evaluate gene-environment interactions between the HER2 polymorphism and factors such as age and family history of breast cancer

    Genetic Covariance Structure of Reading, Intelligence and Memory in Children

    Get PDF
    This study investigates the genetic relationship among reading performance, IQ, verbal and visuospatial working memory (WM) and short-term memory (STM) in a sample of 112, 9-year-old twin pairs and their older siblings. The relationship between reading performance and the other traits was explained by a common genetic factor for reading performance, IQ, WM and STM and a genetic factor that only influenced reading performance and verbal memory. Genetic variation explained 83% of the variation in reading performance; most of this genetic variance was explained by variation in IQ and memory performance. We hypothesize, based on these results, that children with reading problems possibly can be divided into three groups: (1) children low in IQ and with reading problems; (2) children with average IQ but a STM deficit and with reading problems; (3) children with low IQ and STM deficits; this group may experience more reading problems than the other two
    • 

    corecore