24 research outputs found

    Activated CD4+ T cells enhance radiation effect through the cooperation of interferon-Ξ³ and TNF-Ξ±

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approaches that enhance radiation effect may lead to improved clinical outcome and decrease toxicity. Here we investigated whether activated CD4+ T cells (aCD4) can serve as an effective radiosensitizer.</p> <p>Methods</p> <p>CD4+ T cells were activated with anti-CD3 and anti-CD28 mAbs. Hela cells were presensitized with aCD4 or conditioned supernatant (aCD4S) or recombinant cytokines for 2 days, followed Ξ³-irradiation. The treated cells were cultured for an additional 2 to 5 days for cell proliferation, cell cycle, and western blot assays. For confirmation, other cancer cell lines were also used.</p> <p>Results</p> <p>Presensitization of tumor cells with aCD4 greatly increased tumor cell growth inhibition. Soluble factors secreted from activated CD4<sup>+ </sup>T cells were primarily responsible for the observed effect. IFN-Ξ³ seemed to play a major role. TNF-Ξ±, though inactive by itself, significantly augmented the radiosensitizing activity of IFN-Ξ³. aCD4S, but not IFN-Ξ³ or IFN-Ξ³/TNF-Ξ± combination, was found to enhance the Ξ³-irradiation-induced G2/M phase arrest. Bax expression was highly upregulated in Hela cells presensitized with aCD4S followed by Ξ³-irradiation. The radio-sensitizing activity of aCD4 is not uniquely observed with Hela cell line, but also seen with other cancer cell lines of various histology.</p> <p>Conclusions</p> <p>Our findings suggest possible molecular and cellular mechanisms that may help explain the radio-sensitization effect of activated lymphocytes, and may provide an improved strategy in the treatment of cancer with radiotherapy.</p

    Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells)

    Get PDF
    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described

    Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy.

    No full text
    We have been developing synthetic gene promoters responsive to clinical doses of ionizing radiation (IR) for use in suicide gene therapy vectors. The crucial DNA sequences utilized are units with the consensus motif CC(A/T)(6)GG, known as CArG elements, derived from the IR-responsive Egr1 gene. In this study we have investigated the parameters needed to enhance promoter activation to radiation. A series of plasmid vectors containing different enhancer/promoters were constructed, transiently transfected into tumor cells (MCF-7 breast adenocarcinoma and U-373MG glioblastoma) and expression of a downstream reporter assayed. Results revealed that increasing the number of CArG elements, up to a certain level, increased promoter radiation-response; from a fold-induction of 1.95 +/- 0.17 for four elements to 2.74 +/- 0.17 for nine CArGs of the same sequence (for MCF-7 cells). Specific alteration of the core A/T sequences caused an even greater positive response, with fold-inductions of 1.71 +/- 0.23 for six elements of prototype sequence compared with 2.96 +/- 0.52 for one of the new sequences following irradiation. Alteration of spacing (from six to 18 nucleotides) between elements had little effect, as did the addition of an adjacent Sp1 binding site. Combining the optimum number and sequence of CArG elements in an additional enhancer was found to produce the best IR induction levels. Furthermore, the improved enhancers also performed better than the previously reported prototype when used in in vitro and in vivo experimental GDEPT. We envisage such enhancers will be used to drive suicide gene expression from vectors delivered to a tumor within an irradiated field. The modest, but tight expression described in the present study could be amplified using a molecular 'switch' system as previously described using Cre/LoxP. In combination with targeted delivery, this strategy has great potential for significantly improving the efficacy of cancer treatment in the large number of cases where radiotherapy is currently employed
    corecore