50 research outputs found

    Dissociating memory accessibility and precision in forgetting

    Get PDF
    Forgetting involves the loss of information over time; however, we know little about what form this information loss takes. Do memories become less precise over time, or do they instead become less accessible? Here we assessed memory for word–location associations across four days, testing whether forgetting involves losses in precision versus accessibility and whether such losses are modulated by learning a generalizable pattern. We show that forgetting involves losses in memory accessibility with no changes in memory precision. When participants learned a set of related word–location associations that conformed to a general pattern, we saw a strong trade-off; accessibility was enhanced, whereas precision was reduced. However, this trade-off did not appear to be modulated by time or confer a long-term increase in the total amount of information maintained in memory. Our results place theoretical constraints on how models of forgetting and generalization account for time-dependent memory processes. Protocol registration: The stage 1 protocol for this Registered Report was accepted in principle on 4 June 2019. The protocol, as accepted by the journal, can be found at https://doi.org/10.6084/m9.figshare.c.4368464.v1

    Finding the engram.

    Get PDF
    Many attempts have been made to localize the physical trace of a memory, or engram, in the brain. However, until recently, engrams have remained largely elusive. In this Review, we develop four defining criteria that enable us to critically assess the recent progress that has been made towards finding the engram. Recent \u27capture\u27 studies use novel approaches to tag populations of neurons that are active during memory encoding, thereby allowing these engram-associated neurons to be manipulated at later times. We propose that findings from these capture studies represent considerable progress in allowing us to observe, erase and express the engram

    Recurrent genetic defects on chromosome 5q in myeloid neoplasms

    No full text
    BACKGROUND: Deletion of chromosome 5q (del(5q)) is the most common karyotypic abnormality in myeloid neoplasms. MATERIALS AND METHODS: To define the pathogenic molecular features associated with del(5q), next-generation sequencing was applied to 133 patients with myeloid neoplasms (MDS; N = 69, MDS/MPN; N = 5, sAML; N = 29, pAML; N = 30) with del(5q) as a sole abnormally or a part of complex karyotype and results were compared to molecular features of patients diploid for chr5. FINDINGS: A number of 5q genes with haploinsufficient expression and/or recurrent somatic mutations were identified; for these genes, CSNK1A1 and G3BP1 within the commonly deleted 5q region and DDX41 within a commonly retained region were most commonly affected by somatic mutations. These genes showed consistent haploinsufficiency in deleted cases; low expression/mutations of G3BP1 or DDX41 were associated with poor survival, likely due to decreased cellular function. The most common mutations on other chromosomes in patients with del(5q) included TP53, and mutations of FLT3 (ITD or TKD), NPM1 or TET2 and were mutually exclusive. Serial sequencing allowed for definition of clonal architecture and dynamics, in patients with exome sequencing allelic imbalance for informative SNPs facilitated simultaneous approximation of clonal size of del(5q) and clonal burden for somatic mutations. INTERPRETATION: Our results illuminate the spectrum of molecular defects characteristic of del(5q), their clinical impact and succession of stepwise evolution

    Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms

    No full text
    We hypothesized that specific molecular mutations are important biomarkers for response to DNA methyltransferase inhibitors (DNMT inhibitors) and may have prognostic value in patients with myelodysplastic syndromes (MDS). Mutational analysis was performed in 92 patients with MDS and related disorders who received 5-azacytidine (n=55), decitabine (n=26) or both (n=11). Mutational status was correlated with overall response rate (ORR), progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analysis. Risk stratification models were created. TET2, DNMT3A, IDH1/IDH2, ASXL1, CBL, RAS and SF3B1 mutations were found in 18, 9, 8, 26, 3, 2 and 13% of patients, respectively. In multivariate analysis, TET2(MUT) and/or DNMT3A(MUT) (P=0.03), platelets > or = 100 × 10(9)/l (P=0.007) and WBC or = 10 g/dl (P=0.01). Better OS was associated with ASXL1(WT) (P=0.008) and SF3B1(MUT) (P=0.01), and, similar to PFS, cytogenetic risk (P=0.0002), age (P=0.02) and hemoglobin (P=0.04). These data support the role of molecular mutations as predictive biomarkers for response and survival in MDS patients treated with DNMT inhibitors

    Recurrent genetic defects on chromosome 5q in myeloid neoplasms

    No full text
    BACKGROUND: Deletion of chromosome 5q (del(5q)) is the most common karyotypic abnormality in myeloid neoplasms. MATERIALS AND METHODS: To define the pathogenic molecular features associated with del(5q), next-generation sequencing was applied to 133 patients with myeloid neoplasms (MDS; N = 69, MDS/MPN; N = 5, sAML; N = 29, pAML; N = 30) with del(5q) as a sole abnormally or a part of complex karyotype and results were compared to molecular features of patients diploid for chr5. FINDINGS: A number of 5q genes with haploinsufficient expression and/or recurrent somatic mutations were identified; for these genes, CSNK1A1 and G3BP1 within the commonly deleted 5q region and DDX41 within a commonly retained region were most commonly affected by somatic mutations. These genes showed consistent haploinsufficiency in deleted cases; low expression/mutations of G3BP1 or DDX41 were associated with poor survival, likely due to decreased cellular function. The most common mutations on other chromosomes in patients with del(5q) included TP53, and mutations of FLT3 (ITD or TKD), NPM1 or TET2 and were mutually exclusive. Serial sequencing allowed for definition of clonal architecture and dynamics, in patients with exome sequencing allelic imbalance for informative SNPs facilitated simultaneous approximation of clonal size of del(5q) and clonal burden for somatic mutations. INTERPRETATION: Our results illuminate the spectrum of molecular defects characteristic of del(5q), their clinical impact and succession of stepwise evolution

    Racial differences in allogeneic hematopoietic cell transplantation outcomes among African Americans and whites

    No full text
    The impact of race on outcome has been identified in a number of cancers, with African Americans having poorer survival compared with whites. We conducted a study to investigate the association of race with allogeneic hematopoietic cell transplant (HCT) outcomes. We identified 789 patients (58 African Americans and 731 whites) who underwent allogeneic HCT for hematologic disorders. There were no significant differences between African Americans and white patients in gender, performance status or comorbidity score. However, African Americans were younger than whites (median 40 years versus 47 years, P=0.003) and were more likely to be in remission at HCT (74% versus 57%, P=0.011), to have an HLA-mismatched donor (36% versus 14%, P<0.001), to have positive donor or recipient CMV serostatus (90% versus 69%, P<0.001) and to have received a cord blood transplant (21% versus 6%, P<0.001). In univariate analysis, African Americans had worse overall survival (OS) (HR 1.41, P=0.026) compared with whites, with no significant differences in acute or chronic GvHD, non-CMV infection or relapse. However, after adjusting for several transplant and disease-related factors in multivariate analysis, the OS difference between African Americans and whites became nonsignificant (HR 1.27, P=0.18). These results suggest that race in and of itself does not lead to worse survival post HCT
    corecore