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Abstract 

Forgetting involves the loss of information over time, however, we know little about what form this 

information loss takes. Do memories become less precise over time, or do they instead become less 

accessible? We assessed memory for word-location associations across 4 days, testing whether 

forgetting involves losses in precision vs accessibility and whether such losses are modulated by 

learning a generalisable pattern. We show that forgetting involves losses in memory accessibility with 

no changes in memory precision. When participants learnt a set of related word-location associations 

that conformed to a general pattern, we saw a strong trade-off; accessibility was enhanced whereas 

precision was reduced. However, this trade-off did not appear to be modulated by time or confer a 

long-term increase in the total amount of information maintained in memory. Our results place 

theoretical constraints on how models of forgetting and generalisation account for time-dependent 

memory processes. 
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Introduction 

Forgetting is an inevitable consequence of remembering. We forget many of our everyday experiences 

over time, remembering only a small proportion of the large volume of information we process on a 

daily basis1. Psychologists have focussed on characterising the rate at which forgetting occurs – 

epitomised by Ebbinghaus’ forgetting curves2, and have asked why it occurs – for example via 

interference or decay3–6. This focus on both the when and why of forgetting has perhaps been at the 

expense of asking what is forgotten. When forgetting occurs, what type of information is lost? This 

question is critical given the proposal that forgetting is beneficial to decision-making processes7,8. If 

we are to understand how forgetting aids decision-making, we first need to reveal the form that such 

forgetting takes. 

Here we outline two possible ways in which forgetting might occur – via decreases in memory 

accessibility or precision. Imagine being in a park and meeting a friend by a fountain in the north-east 

corner. Sometime in the future, you might want to remember the specific location where you met. A 

decrease in accessibility would mean a reduced probability of retrieving that specific memory. 

However, if successfully retrieved, you may remember the meeting location with the same accuracy 

as before. A decrease in precision would mean that the probability of successful retrieval does not 

change, but the spatial precision of retrieval does decrease. You might remember meeting your friend 

in the park, but not specifically by the fountain in the north-east corner. Both accessibility and 

precision can be defined as a loss of information, yet these two types of information loss should be 

behaviourally dissociable. Further, these two potential forms of forgetting might be underpinned by 

distinct mechanisms. For example, whereas accessibility might change as a function of the connection 

strength between a retrieval cue and its associated memory trace, precision might change as a 

function of noise in the underlying trace itself. Note, here we define ‘forgetting’ broadly in terms of a 

loss of information, as opposed to a more restrictive definition in relation to whether retrieval has 

been successful or not. 

A number of theoretical accounts suggest that forgetting should involve different rates of decline for 

certain types of mnemonic information. In particular, Fuzzy-trace theory (FTT) posits that episodic 

memories are encoded by two independent traces that may be stored and retrieved in parallel9. One 

of these traces represents the fine-grained details of an event whereas the other encodes gist 

information in the form of semantic features. Relatedly, building on multiple trace theory10, the Trace 

Transformation Theory (TTT) proposes that the hippocampus supports the encoding and retention of 

episodic, context-rich, memories, while the neocortex transforms such representations into more 

semantic, gist-like, memories11,12. Empirical observations support these dissociations by showing that 
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perceptual details may be lost faster than gist information13–16. However, this research focusses on 

loss of information for two distinct mnemonic representations, as opposed to losses in accessibility 

and precision for individual memory representations. 

Recent research has shown that accessibility and precision are perhaps distinct components of an 

episodic representation. First, although accessibility and precision positively correlate across 

participants, they each have unique variance17. Participants can make accurate metacognitive 

judgements at retrieval related to this unique variance – they can subjectively report how accessible 

and precise memory retrieval is on a trial-by-trial basis18. Accessibility and precision have also been 

shown to be neurally dissociable. fMRI evidence has shown that trial-by-trial accessibility correlates 

with hippocampal activity, whereas trial-by-trial precision correlates with angular gyrus activity19 (but 

also see20). Further, repetitive transcranial magnetic stimulation to the lateral parietal cortex produces 

improvements in precision, but not accessibility21. Thus, although there is evidence from working 

memory paradigms that accessibility and precision can be characterised using a single parameter 

model22, long-term memory studies have provided evidence that accessibility and precision are (at 

least partially) behaviourally and neurally dissociable. 

One previous study has specifically focused on accessibility and precision in relation to forgetting in 

working memory23. Sun et al showed that encoding similar interfering material led to decreases in 

precision (referred to as ‘blurring’), whereas less similar material led to decreases in accessibility 

(referred to as ‘erasure’). In contrast to Sun et al, who focus on experimental interference in working 

memory, we focus on whether these plausibly distinct long-term memory processes can be 

dissociated via their forgetting rates over time. Assessing the temporal profile of forgetting is critical 

given that this reflects more naturalistic ‘everyday’ forgetting (i.e., participants are free to go about 

the daily lives in between encoding and retrieval). If forgetting does play a role in optimising decision-

making processes, knowing what information is available to these processes, and when it is available, 

is critical to the development of models of memory-guided decision-making. Additionally, 

understanding whether forgetting principally involves losses in precision or accessibility will inform 

theoretical accounts of long-term memory retention. 

To date, research into forgetting has predominantly used binary measures of memory retrieval, where 

each retrieval trial can be classified as either correct or incorrect5. Forgetting under these 

experimental conditions is typically assessed by comparing accuracy (i.e., the proportion of correct 

responses) across experimental conditions. This general approach has been highly successful in 

delineating interference versus decay accounts of forgetting, and recently has shown that item-based 
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familiarity is more susceptible to interference than decay, whereas recollection is more susceptible to 

decay than interference6. However, this experimental approach is not capable of dissociating between 

accessibility and precision. Note, there is no clear correspondence between familiarity vs recollection, 

and accessibility vs precision. Indeed, accessibility and precision may be independent components of 

recollection (dependent on the experimental task used). As such, we make no claims in relation to the 

debate surrounding possible dissociations between familiarity and recollection, instead focussing on 

potential dissociations between accessibility and precision. 

As noted, ‘precision’ measures of memory have been used to study both working memory24,25 and 

long-term memory18–20. Here participants are required to remember a continuous perceptual detail of 

a stimulus, such as the colour of an object or its location on a circle. In the long-term memory 

literature, it is typical to pair a word with a location on a circle at encoding such that participants learn 

a ‘word-location association’17,18,26. At retrieval, the word acts as the cue and participants have to 

move a cursor to the remembered location on the circle. Memory ‘precision’ is measured as the 

angular difference (error) between the correct and remembered location. Thus, memory performance 

is assessed with a continuous rather than binary measure. 

 Precision memory measures have also been combined with a statistical approach (mixture modelling) 

that allows for the characterisation of both memory accessibility and precision. Taking the angular 

error across all trials, mixture models allow one to fit a circular bell-shaped distribution (a von Mises 

distribution) to the data. Once fit, the width of the von Mises distribution reflects the precision of 

memory retrieval. For example, if a participant is remembering circular locations very precisely, the 

distribution of angular errors will be narrow. Memory accessibility can also be estimated by 

considering the proportion of angular errors that were likely generated by the von Mises distribution, 

rather than being uniformly distributed around the circle (indicative of guessing). Importantly, these 

measures of accessibility and precision are independent of each other, such that if precision is high, 

accessibility can be either high or low (and vice versa). The combination of precision memory measures 

and mixture modelling therefore offers a unique opportunity to assess the extent to which forgetting 

decreases accessibility or precision. 

Current measures of accessibility and precision are, to date, not directly comparable. Whereas the 

accessibility measure is related to ‘proportion correct’ in a more typical memory experiment, the 

precision measure relates to the width of the fitted von Mises distribution. To assess the extent to 

which forgetting is characterised by decreases in accessibility or precision, we need to develop a 

common metric. The concept of ‘information loss’ is related to entropy, which measures the lack of 
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predictability in a given system27. As information is lost, the system behaves less predictably, and so 

responses will become more variable. Here we use the entropy of behavioural responses28,29 to 

measure the amount of information loss across time. We introduce a common metric to directly 

compare information loss in terms of both accessibility and precision. Using this common metric, we 

measured the accessibility and precision of word-location associations in an online experiment 

involving a large sample of participants. Specifically, we tracked changes in accessibility and precision 

across time by allocating participants to one of 7 retention interval conditions such that retrieval 

occurred either 0 hrs, 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs, or 96 hrs after initial encoding. We directly 

compared the pattern of decreases in accessibility and precision across these intervals. Thus, we were 

able to assess whether accessibility and precision decreased at differing rates. 

Episodic memories are not encoded in isolation. We often experience events that are highly related, 

and can use that overlapping content to generalise across a set of events (referred to as schema30–32). 

Theories of consolidation, such as Standard Consolidation Theory33 (SCT) and TTT (introduced 

above11,12) propose that schematic representations, supported by the neocortex, are more stable and 

resilient to forgetting relative to more specific, hippocampal-based, episodic representations. 

Although existing schema can support the encoding of new item-based information34, the ability to 

generalise across related experiences might come at the expense of remembering individual events 

precisely35. Recent evidence suggests that participants use schema when making mnemonic decisions 

(which may be further modulated by systems consolidation36), and that this can result in systematic 

biases towards the ‘average’ representation across events when recalling individual events37. Thus, 

generalisation across a set of related experiences may result in a trade-off – decreasing total 

information loss over time at the expense of losing precise information related to specific events.  

Here we asked whether similar events alter the rate of information loss for accessibility and precision 

over time. Word stimuli in the experiment were grouped into two semantic categories, ‘manmade’ 

and ‘natural’. Participants then associated these words with different locations around a circle (Figure 

1A). The circular locations for one group of words were entirely random at encoding. Locations 

associated with the other group of words were spatially clustered (according to an underlying von 

Mises distribution with a fixed-width; conceptually similar to Richards et al38). At test, participants 

were asked to reproduce the location associated with each word (Figure 1B). This clustering of 

locations for semantically similar words may allow participants to generalise across a set of related 

experiences (either at encoding or retrieval), potentially altering the rate of information loss for 

accessibility or precision (see hypotheses below and pilot data in the Supplementary Information). The 

present study aimed to systematically characterise differential losses of accessibility and precision 
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over the 7 retention intervals. However, future work is needed to reveal whether such losses are 

driven by processes at encoding or retrieval, and what the nature of the underlying representations 

are in the clustered and non-clustered condition. 

Using online testing, we tracked rates of information loss in terms of accessibility and precision for 

word-location associations that were either randomly distributed around a circle (non-clustered) or 

spatially clustered. Our experimental approach focused on memory for the word-location 

associations, rather than item memory for individual words (see planned exploratory analyses that 

differentiate item and associative memory).  

Our preregistered analyses tested five specific hypotheses (each was assessed in our pilot data, 

providing evidence in favour of the alternative hypothesis; BFs > 6; see Supplementary Figure 1 and 

Supplementary Table 1). Before examining separate measures of accessibility and precision, we made 

two predictions in relation to the total amount of information (𝐼𝑡, see Methods). 𝐼𝑡 is a measure of the 

total amount of information in a given condition that takes into account the level of both accessibility 

and precision. First, we predicted a decrease in total information across time, specifically for non-

clustered words, consistent with the presence of forgetting (Hypothesis 1). Second, we predicted that 

clustered words would confer an overall memory benefit relative to non-clustered words, consistent 

with a benefit when schema are formed (regardless of time; Hypothesis 2). These hypotheses act as 

positive controls, providing greater certainty for the validity of the more specific hypotheses below. 

Of central theoretical interest was whether accessibility and precision differ in relation to forgetting, 

and how this further interacts with our manipulation of clustering. Here we decomposed the measure 

of total information (𝐼𝑡) into separate measures of accessibility (𝐼𝑝) and precision (𝐼𝑘; the subscripts 𝑝 

and 𝑘 refer to the corresponding parameters in the mixture model). First, we predicted that the 

temporal profile of forgetting, specifically for non-clustered words, differs for accessibility and 

precision as these measures reflect different components of memory (Hypothesis 3). We remained 

agnostic as to whether this forgetting rate will be faster or slower for accessibility vs precision. 

Our final two preregistered hypotheses related to how clustering differentially affects accessibility and 

precision. As previously discussed, computational work has suggested a trade-off between 

generalisation and remembering individual events precisely35. Theories of consolidation also predict 

that gist-like, schematic, representations should be retained for longer periods of time, and that these 

representations might aid memory accessibility that the expense of precision11,12. We therefore 

predicted that accessibility and precision will differ between the clustered and non-clustered 

condition (regardless of time; Hypothesis 4). In particular, this interaction was likely to present as 
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increased accessibility, but decreased precision, in the clustered relative to the non-clustered 

condition (see pilot data). However, the statistical test for this was chosen to be non-directional. 

Furthermore, this interaction was predicted to be modulated by time, such that the rate of 

information loss for accessibility vs precision would differ dependent on whether words were 

clustered or non-clustered (Hypothesis 5). This three-way interaction was predicted to present as a 

more rapid loss in accessibility in the non-clustered (relative to clustered) condition, in contrast to a 

more rapid loss in precision in the clustered (relative to non-clustered) condition (see pilot data). 

Again, however, the statistical test for this was non-directional. 

As mentioned above, our principal hypotheses and preregistered analyses do not differentiate 

between failures to recognise individual cue words, and failures to recall specific locations when a cue 

word is remembered. Nonetheless, potentially dissociating between these possibilities is also 

important. As such, at the end of each word-location retrieval trial, participants were asked to provide 

subjective judgments regarding whether they remembered both the cued word and its associated 

location (associative retrieval), the word alone (item recognition), or neither (see Figure 1B). 

Planned exploratory analyses then tested for possible dissociations between item- vs associative-

memory. These analyses provided the potential to shed light on differences between the clustered 

and non-clustered conditions. For instance, a performance advantage for clustered trials could result 

from either: (1) better memory for specific word-location associations within a spatial schema 

(enhanced retention), or (2) mnemonic generalisation involving the retrieval of representative 

locations when specific word-location associations have been forgotten (i.e., exemplar or prototype 

generalisation39). Higher proportions of associative retrieval judgments in the clustered condition 

would support an enhanced retention account whereas lower proportions would suggest the use of 

generalisation. Thus, our post-trial question provided some measure of whether specific words or 

word-location associations are forgotten, depending on whether they are part of a semantic cluster. 

To summarise, we used online testing, precision memory measures, and mixture modelling to assess 

forgetting across time. Using a common metric (information), we directly compared decreases in 

accessibility and precision over time and investigated how these decreases were modulated by 

overlapping experience (i.e., clustered vs non-clustered words). 
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Results 

Final sample size and demographics 

In accordance with our recruitment protocol, we collected data until the Bayes factors for each of our 

preregistered hypotheses became sensitive (indicating 10 times more evidence in favour of either the 

null or alternative hypothesis), or our maximum feasible sample size had been obtained. In fact, data 

collection stopped at the maximum sample size with all but one of the Bayes factors (Hypothesis 5) 

reaching our sensitivity threshold. In total, the final sample included data from 431 participants with 

60, 68, 62, 60, 61, 60, and 60 participants in the 0, 3, 6, 12, 24, 48, and 96 hrs conditions respectively. 

The variation in final sample sizes across the retention intervals was driven by logistic difficulties in 

knowing whether recruited participants were likely to provide complete datasets, and thus over-

recruiting in some retention intervals. Participants’ ages were uniformly distributed between our 

upper and lower age limits (18-35 inclusive; median age: 28 years) and approximately 65% identified 

as female. 

Preregistered analyses 

Effect sizes, Bayes factors, and frequentist statists for each of our pre-registered hypotheses are 

presented in Table 1. Figure 2A displays each measure of mnemonic information (𝐼𝑡, 𝐼𝑝 and 𝐼𝑘) with 

individual data points and mean estimates from generalised-linear mixed-effects models of the data 

(GLMMs; see Methods). Additionally, Figure 2B plots kernel density estimates (averaged across 

participants) that characterise the distribution of angular errors in each condition. These are produced 

using a non-parametric technique and so provide an alternative means of visualising changes in 

performance independent of the mixture models that were used to compute 𝐼𝑡, 𝐼𝑝 and 𝐼𝑘 (see 

Supplementary Information for details). Raw means and standard deviations of each outcome 

measure are provided in Supplementary Table 2. 

As predicted, the total amount of information retained in memory (𝐼𝑡) decreased across retention 

intervals in the non-clustered condition, consistent with the forgetting of word-location associations 

(BF10 = 117; Hypothesis 1). However, counter to our predictions, we did not find an overall difference 

in performance between the clustered and non-clustered conditions (i.e. a main effect; Hypothesis 2). 

Indeed, the Bayes factor for this test shows substantial evidence in favour of the null hypothesis 

(BF10 = 0.054). Thus, we provide evidence of forgetting, as measured by decreases in total information 

in the non-clustered condition over time, and evidence for no overall memory benefit for the clustered 

relative to non-clustered condition (as measured by total information, regardless of time). 
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Hypothesis 3 related to our prediction that accessibility (𝐼𝑝) and precision (𝐼𝑘) decline at different rates 

and this is strongly supported by our analyses (BF10 = 35.1). Specifically, estimates of memory 

accessibility declined much more rapidly than estimates of memory precision. Hypothesis 4 concerned 

our prediction that clustering would differentially alter the levels of accessibility and precision in 

general (i.e. when averaging across retention intervals). Again, this was strongly supported by our 

analyses with clustered trials eliciting higher levels of accessibility, but lower levels of precision 

(BF10 = 5.98×106; c.f. 𝐼𝑘 estimates in the 0 hrs and 3 hrs conditions). We also predicted that this 

differential effect of clustering would be further modulated by time (Hypothesis 5). In particular, we 

expected to see a more rapid loss of accessibility in the non-clustered condition, and a more rapid loss 

of precision in the clustered condition. Despite this, the Bayes factor for Hypothesis 5 revealed there 

to be over 5 times more evidence in favour of no effect (BF10 = 0.188). While this result does not reach 

our sensitivity threshold, it implies that the rates of change in accessibility and precision are not 

substantially altered by the clustering manipulation. 

Exploratory analyses 

Post-hoc tests 

The two key positive findings from our pre-registered hypotheses were: (1) accessibility and precision 

decline at different rates in the non-clustered condition (Hypothesis 3) and (2) accessibility and 

precision are modulated by the clustering manipulation, regardless of time interval (Hypothesis 4). 

Exploratory analyses to characterise these interactions were conducted. In relation to Hypothesis 3, 

we tested for evidence of exponential losses in accessibility and precision separately. This revealed 

strong evidence for a decline in accessibility in the non-clustered condition (d = 0.279, BF10 = 5620, 

t1696 = 4.762, p < .001), but evidence in favour of the null (i.e., no decline) for precision (d = 0.002, 

BF10 = 0.0612, t1696 = 0.057, p = .955). We therefore provide clear evidence that forgetting in this 

experimental paradigm is driven solely by loses in accessibility and not precision (at least in the non-

clustered condition). Finally, in relation to Hypothesis 4, we found strong evidence for increased 

accessibility (d = 0.117, BF10 = 4.75 × 105, t1696 = 5.771, p < .001) but decreased precision (d = 0.061, 

BF10 = 225, t1696 = 4.317, p < .001) in the clustered relative to the non-clustered condition (collapsed 

across time interval). The clustering manipulation therefore increased accessibility at the expense of 

precision. As such, we provide strong evidence for two independent effects: (1) decreased accessibility 

but not precision across time intervals (in the non-clustered condition) and (2) increased accessibility 

and decreased precision in the clustered relative to the non-clustered condition, regardless of time 

interval. 
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The pre-registered analyses provided strong evidence against Hypothesis 2; that clustered trials 

should generally yield higher levels of performance as measured by 𝐼𝑡. Nonetheless, clustered 𝐼𝑡 
scores were notably larger than non-clustered 𝐼𝑡 scores in the 0 hrs and 3 hrs conditions (d = 0.106 

and 0.164 respectively). Additionally, while our pre-registered analyses found no main effect of 

clustering, our pilot data strongly suggested that one should be found (see Supplementary 

Information). Given this, we wished to explore whether the main effect we originally observed in the 

pilot was best characterised as an interaction between clustering and delay. We therefore tested for 

this interaction with the same linear contrast used in the main analyses. This produced weak evidence 

that clustering yields higher levels of performance at shorter retention intervals, with a smaller or non-

existent effect at longer delays; d = 0.312, BF10 = 5.69, t848 = 2.771, p = .006. Thus, the clustered 

condition may confer memory benefits over shorter time intervals, with this advantage possibly 

deceasing across time. This will need to be tested in planned confirmatory analyses. 

Planned exploratory analyses 

We first explored whether there were systematic changes in the subjective memory judgments that 

participants provided after each test trial. Here, participants indicated whether they remembered the 

word-location association, the word alone, or neither. As planned, we specified a cumulative link 

mixed-effects regression model to predict changes in the proportion of test trials that received either 

a ‘Word + location’, ‘Word only’, or ‘Neither’ response. Figure 3 plots the model-derived probability 

estimates for each response type across conditions. The model indicated strong evidence for time-

dependent decreases in the subjective retrieval of words and word-location associations in both the 

non-clustered and clustered conditions; BF10 = 2484, z = 4.919, p < .001, and BF10 = 574, z = 4.468, 

p < .001 (respectively; tested by the same linear contrast used in our pre-registered hypotheses). This 

manifested as a reduced proportion of ‘Word + location’ responses at longer retention intervals, 

marginally fewer ‘Word only’ responses at the same time-points, and corresponding increases in 

‘Neither’ responses. We also found evidence for a main effect of clustering indicating that, on average, 

clustered trials received more ‘Word + location’ and ‘Word only’ responses (irrespective of retention 

interval); BF10 = 6.97, z = 2.900, p = .004. This effect was principally driven by differences in 4 of the 

delayed retention intervals (specifically, 3 hrs, 12 hrs, 48 hrs, and 96 hrs). However, there was no 

evidence for a consistent interaction between clustering and retention interval; BF10 = 0.592, z = 1.629, 

p = .103 (nor evidence in favour of the null hypothesis of no interaction). 

We also re-ran the main analyses testing each pre-registered hypothesis after excluding the set of all 

test trials that received a ‘Neither’ response (i.e. removing trails where the cue word was not 

subjectively recognised). This analysis aimed to test whether losses in memory accessibility reflect 
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either: (1) reduced accessibility for the cue word per se, or (2) failures to maintain the word-location 

association (in the presence of item memory for the word). As this analysis was performed on a 

restricted subset of trials, the mixture models that provided estimates of performance could not be 

adequately fitted to the data for all participants in the main sample. As such, this analysis included 

data from only 319 participants with 56, 53, 49, 44, 44, 42, and 31 participants in the 0, 3, 6, 12, 24, 

48, and 96 hrs conditions respectively. 

The results were largely similar to those reported above (effect sizes, Bayes factors, and frequentist 

statistics detailed in Supplementary Table 3). Importantly, even after excluding ‘Neither’ trials, we still 

observed differential rates of loss for accessibility and precision in the non-clustered condition 

(Hypothesis 3; d = 0.322, BF10 = 7.699, t1248 = 2.886, p = .004). As before, this was driven by large 

reductions in accessibility (𝐼𝑝) across retention intervals and was evident for both the clustered and 

non-clustered conditions (pooled effect: d = 0.365, BF10 = 14675, t1248 = 4.938, p < .001, raw effect size: 

0.277 nats). Critically, these decreases are comparable, if not larger than, the analogous effect in the 

main, pre-registered analysis (d = 0.309, BF10 = 6.72 × 106, t1696 = 6.101, p < .001, raw effect size: 0.260 

nats). Given this, losses in accessibility appear to be principally driven by failures to maintain the word-

location association rather than reduced accessibility for the cue word per se. In contrast to the pre-

registered analysis, the restricted analysis showed more evidence in favour of Hypothesis 5 rather 

than the null (d = 0.406 BF10 = 4.472, t1248 = 2.613, p = .009). As originally hypothesised, this effect 

suggested that there were consistent time-dependent decreases in memory precision for clustered 

trials, but no such decreases for non-clustered trials (see Supplementary Figure 2).  

Additional exploratory analyses 

While our preregistered analyses demonstrated that memory performance decreased over time, we 

explored whether location responses became increasingly influenced by a spatial schema that 

represented approximate locations in the clustered condition. To do this, we first produced kernel 

density estimates that quantified the spatial distribution of participant’s responses (similar to Richards 

et al38). This was done for clustered and non-clustered test trials separately (condition averages 

plotted in Supplementary Figure 3). Importantly, the kernel density estimates reflected the absolute 

position of responses relative to centre of the experimentally imposed cluster, not the accuracy of 

those responses per se. Given these estimates, we then computed the Kullback–Leibler divergence 

(𝐷𝐾𝐿) between participant responses and the spatial pattern characteristic of clustered locations. 𝐷𝐾𝐿 

scores vary between zero and positive infinity with low values indicating a close correspondence 

between responses and the clustered pattern. Full details of these estimation steps are provided in 

the Supplementary Methods. 
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As in the pre-registered analyses, we then generated a GLMM to model changes in 𝐷𝐾𝐿 scores as a 

function of retention interval and the clustering manipulation. Mean estimates of 𝐷𝐾𝐿 for each 

condition are plotted in Figure 4. This exploratory GLMM highlighted a large main effect of clustering 

indicating that, across all retention intervals, responses in the clustered condition were more similar 

to the underlying spatial pattern than responses in the non-clustered condition (d = 0.482, 

BF10 = 4.92 × 1059, t848 = 16.805, p < .001). There was no evidence for a main effect of delay (d = 0.158, 

BF10 = 1.158, t848 = 2.247, p = .025; tested by the same linear contrast used in our pre-registered 

hypotheses). Nonetheless, we did detect a strong clustering by delay interaction (d = 0.364, 

BF10 = 21.921 × 1059, t848 = 16.805, p < .001). This reflected the fact that, while 𝐷𝐾𝐿 scores remained 

stable in the non-clustered condition (d = 0.071, BF10 = 0.165, t848 = 0.852, p = .394), scores in the 

clustered condition increased implying a growing dissimilarity between location responses and the 

underlying spatial pattern (d = 0.275, BF10 = 18.9, t848 = 3.247, p = .001). Given this, we explored 

whether the changes in 𝐷𝐾𝐿 where strongly related to changes in accessibility and/or precision for the 

clustered items. To do this, we regressed mean estimates of clustered 𝐷𝐾𝐿 scores for each retention 

interval against the corresponding means for 𝐼𝑝 and 𝐼𝑘. This showed that timepoint-by-timepoint 

changes in 𝐷𝐾𝐿 were almost entirely predicted by linear changes in 𝐼𝑝 (partial R2 = .906). In contrast, 

the relationship between 𝐷𝐾𝐿 scores and 𝐼𝑘 was much weaker (partial R2 = .286). This implies that the 

time-dependent changes in pattern divergence are related to the previously reported decreases in 

memory accessibility and are only minimally influenced by the small changes in precision. 
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Discussion 

A principal aim of this study was to establish whether the forgetting of long-term associative memories 

entails losses in memory accessibility, memory precision, or both. Here, participants learnt 

associations between words and distinct spatial locations around a circle. As predicted, memory for 

these associations declined over time. Importantly, our results clearly demonstrate that this decline 

in memory performance predominantly involved losses in memory accessibility for specific word-

location associations. At the same time, there were negligible changes in the precision of locations 

that were correctly retrieved. If a word-location association was successfully accessed, it was retrieved 

with the same level of precision as at immediate test. 

This mirrors recent research on contextually rich event memories suggesting that, while the number 

of remembered details dramatically reduces with time, details that are remembered can be recalled 

with remarkable accuracy43. Additionally, it has been shown that episodic events are forgotten in an 

all-or-none manner, where accessibility for the key features of a memory trace decrease uniformly44. 

Together, these results suggest that episodic memories that remain accessible continue to be 

retrieved in a holistic fashion, and that the constituent features of those memories may be accessed 

with unchanged levels of precision. It is noteworthy that previous research has shown that encoding 

overlapping content in a working memory task can lead to losses in precision23. In the present study, 

the learning phase involved encoding a large number of word-location associations. As such, any 

interference from related material may have led to decreases in precision at the point of encoding (or 

shortly after). Nonetheless, our results clearly indicate that, following encoding of data that does not 

contain general patterns, there are no further losses in precision, despite clear evidence of forgetting. 

A number of neurobiological mechanisms that may contribute to forgetting have now been identified. 

These include dopamine-induced signalling cascades, within-neuron receptor transport, and 

hippocampal neurogenesis8,45,46. Our results suggest that these mechanisms may act to reduce the 

accessibility (or availability) of independent memory traces, while not affecting the precision of traces 

that remain accessible. This hypothesis is consistent with studies of engram cells in the rodent 

hippocampus. Specifically, ‘silent’ memory engrams have been observed which are no longer 

activated by natural retrieval cues but can be artificially expressed to induce retrieval47,48. As such, the 

precision of an engram may be unrelated to the ease with which it is accessed. 

The current study also sought to track the maintenance of overlapping (clustered) associations that 

may be represented by a generalised pattern or rule. This was achieved by clustering locations for one 

group of semantically related words (the clustered condition) and comparing memory performance in 



15 

 

 

this condition to a separate group of semantically related words that were associated with entirely 

random locations around the circle (the non-clustered condition). We predicted that learning 

overlapping associations would generally aid performance and increase the apparent level of 

mnemonic information maintained by participants. This prediction did not hold. Although there was 

relatively weak evidence of an advantage for clustered words at short retention intervals, this rapidly 

diminished with time (as seen in exploratory analyses). Indeed, our pre-registered hypothesis testing 

for greater total information in the clustered relative to the non-clustered condition (irrespective of 

retention interval) provided strong evidence in favour of the null hypothesis. However, while the 

amount of total mnemonic information was similar between the clustered and non-clustered 

conditions, the quality of that information was very different. As predicted, relative to the non-

clustered condition, words associated with clustered locations could cue retrieval more frequently 

across all retention intervals, at the expense of reduced precision (a time-independent trade-off 

between accessibility and precision). Importantly, given the similar levels of total information in the 

clustered and non-clustered conditions, we can conclude that this trade-off is a genuine trade-off, 

with no evidence that the increase in accessibility outweighed the decrease in precision. 

This result is consistent with suggestions that extracting patterns across a set of memories aids 

performance when generalising knowledge at the expense of a loss of detail for specific memory 

representations35. The finding also mirrors working memory studies demonstrating that encoding 

similar visual features leads to decreases in precision, whereas encoding dissimilar features results in 

decreased accessibility23. As noted above, the reduced precision in these working memory 

experiments is thought to reflect interference between similar items. Accordingly, it is likely that our 

clustering manipulation induced interference between similar locations and that this caused the 

reduced precision that we observed in the clustered condition. Interestingly, these reductions in 

precision were perhaps only evident at longer retention intervals; the clustered and non-clustered 

conditions yielded numerically similar levels of precision after 0 and 3 hours (see Figure 2). Indeed, we 

predicted that there would be a more rapid loss of precision for clustered items relative to changes in 

accessibility (Hypothesis 5). Despite this, our a priori test for this interaction showed more evidence 

in favour of a null effect since the predicted difference was small and did not conform to our 

expectation of exponential changes across time (though our sensitivity threshold of BF10 < 0.1 was not 

reached). As such, the trade-off between accessibility and precision in this study does not appear to 

be modulated by retention interval.  

As part of our planned exploratory analyses, we re-ran the main analyses but only included test trails 

where participants subjectively recognised the cue word as a previously studied item. The aim of this 
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was to produce measures of memory performance that reflect participants’ ability to remember the 

word-location association when the word cue itself was subjectively recognised. After excluding trials 

that yielded no word recognition, we found that the effect of delay on accessibility scores was 

comparable to, if not larger than, the pre-registered effect. This suggests that the losses in memory 

accessibility were primarily driven by an inability for cue words to trigger associative retrieval rather 

than an inability to recognise the cue words themselves. Nonetheless, it is noteworthy that we are 

unable to determine whether word-location memories were not accessible due to a retrieval failure, 

or memory erasure (processes that Tulving termed failures of memory accessibility and availability, 

respectively49–51). A further possibility is that decreases in accessibility were driven by increases in 

misbinding, where the location of a different word is retrieved instead of the true word-location 

association52. 

The re-analyses involving only subjectively recognised cue words produced results that were largely 

the same as in the main analyses. However, it is noteworthy that this exploratory test yielded some 

evidence in favour of Hypothesis 5 (the interaction that was not originally supported). The reason for 

this divergent finding is not clear. Yet, there are two important differences between the pre-registered 

analyses and the exploratory analyses restricted by subjective memory judgments. First, the 

exploratory analysis only included data from a subset of test trials (i.e. trails where the cue word was 

subjectively recognised). It is possible that when a word was subjectively recognised but its location 

was not recalled, participants in later retention intervals relied on a form of spatial generalisation that 

yielded lower levels of precision. While possible, this account assumes that words which were not 

subjectively recognised, were also not subject to the same generalisation process, and this altered 

estimates of accessibility and precision in the main analysis. A second important difference relates to 

the number of participants who could be included in the exploratory analyses. Specifically, because 

restricting the number of test trials made participant exclusion more probable, the exploratory 

analyses involved disproportionally more participants with higher levels of retrieval confidence, 

particularly at longer retention intervals. Given this, the differing results may simply reflect a 

survivorship bias if subjective recognition confidence is correlated with memory precision. 

Our planned exploratory analyses also examined time-dependent changes in the subjective memory 

judgments themselves. The number of responses indicating subjective word-location retrieval 

declined monotonically across retention intervals. However, there was one notable exception to this 

pattern; at 12 hours there were substantially fewer ‘Word + location’ and ‘Word only’ responses in 

comparison to the 6 hrs and 24 hrs intervals (see Figure 3). Importantly, estimates of accessibility and 

precision do not show this same non-monotonicity. The reason for this dissociation is not clear. 
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However, it is noteworthy that most participants in the 12 hrs condition (45/60 = 75%) ran their study 

phase in the morning and their test phase later that night (on average, night-time test sessions started 

at 22:47 local time). The remainder of these participants ran their study phase in the evening and their 

test phase early the next morning (average morning time session started at 07:31 local time). In 

contrast, participants in all other conditions tended to start both sessions during more regular working 

hours distributed through the day. As such, it possible that the reduction in subjective retrieval at 12 

hours is attributable to psychological factors that fluctuate with the time-of-day, but importantly do 

not appear to affect participants’ objective memory performance. 

Our final set of exploratory analyses attempted to determine whether location responses became 

increasingly influenced by a spatial schema that represented approximate locations in the clustered 

condition. Kullback–Leibler divergence statistics indicated that the degree of pattern matching 

between participants’ responses and the distribution of studied locations declined with time (see 

also53). Furthermore, this increasing divergence was strongly related to time-dependent changes in 

accessibility (𝐼𝑝) rather than precision (𝐼𝑘). This result would seem to be at odds with the theoretical 

position that generalised representations, perhaps supported by the neocortex, are more resilient to 

forgetting over time54. Our results suggest one of two possibilities. First, participants may not have 

been able to extract and/or use a generalised pattern when recalling the clustered associations. While 

evidence for time-dependent pattern extraction has been previously reported38, it is possible that our 

stimulus set was not sufficiently structured to induce the use of a general pattern. Alternatively, it may 

have been possible that participants were indeed relying on a generalised pattern, yet the underlying 

representations supporting this were subject to the same time-dependent forgetting processes that 

affected non-clustered stimuli. This interpretation is supported by the finding that precision was 

overall lower in the clustered (relative to the non-clustered) condition, as it suggests that clustering 

leads to the development of a schema that confers less precise information. Importantly, retrieval-

based generalisation mechanisms do predict that the loss of accessibility for specific items should be 

correlated with overall generalisation performance55,56. Thus, if participants are able to generalise in 

the clustered condition, our results are more in line with retrieval-based theories of generalisation. 

Further confirmatory research is required to investigate this possibility. 

In sum, we have shown that forgetting distinct (non-overlapping) word-location associations 

predominantly involves losses in memory accessibility with negligible changes in memory precision. 

When memories do have similar features, and can potentially be represented by a general pattern, 

there is a strong performance trade-off resulting in increased accessibility but reduced precision 

across multiple retention intervals. However, this does not appear to confer a long-term increase in 
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the total amount of information that is maintained. Further, the trade-off does not appear to be 

significantly modulated by the retention interval between study and test. Our results are in line with 

theoretical models that predict generalisation performance is underpinned by retrieval-related 

accessibility for individual memory traces55. Additionally, our findings place constraints on 

computational models that make predictions about the nature of forgetting and generalisation, 

particularly in relation to the predicted robustness of generalised representations to forgetting54,57. 
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Methods 

Participants 

Participants (native English-speaking, aged between 18 and 35 years) were recruited from Prolific 

(https://prolific.ac/). Prolific offers a web-based participant pool for behavioural scientists, manages 

participant payments, and ensures that individuals cannot participate in a given study more than once. 

All participants had either normal or corrected-to-normal vision (by self-report) and were 

compensated £7 for their time. The study was approved by a research ethics committee within the 

Department of Psychology at the University of York (ethical approval reference: 607). 

Stimuli 

A list of 200 common English nouns were used as stimuli (http://osf.io/8mzyc/). These belonged to 

one of 2 semantic categories: 100 manmade object nouns, and 100 natural object nouns. Words in 

each category were selected to be similar in length (mean difference: 0.020 characters; d = 0.008) and 

have a similar frequency in natural language (mean difference: 0.044; d = 0.050; as quantified by the 

Zipf scale in the Subtlex-UK database40). [Note: due to a minor coding error, the previous two effect 

sizes were mistakenly reported as being marginally larger in the original protocol registration, 0.011 

and 0.063 respectively]. Additionally, we used a model of natural language word representations to 

ensure that the strength of semantic relationships between stimuli was similar in each category41. The 

word representations themselves were vectors in a 300-dimentional space and derived from a model 

that had been pre-trained on a set of web-based news articles containing approximately 100 billion 

words (see https://code.google.com/archive/p/word2vec). We took the Euclidian distance between 

vectors as a measure of semantic relatedness. This showed that there was only a trivial difference 

between the manmade and natural categories in terms of the mean semantic similarity between 

words (d = 0.034). [Note: due to a minor coding error this effect size was mistakenly reported as being 

0.048 in the original protocol registration]. Nonetheless, a linear support vector machine was able to 

correctly classify 97% of the words as either manmade or natural using the vector representations 

alone. This suggests that the word categories were highly separable in semantic space. Finally, 

Kolmogorov–Smirnov tests showed that the distributions of word length, word frequency, and sematic 

relatedness did not substantially differ between the manmade and natural categories (each D ≤ 0.2). 

Procedure 

Participants recruited from Prolific were directed to a secure website hosting the online experiment. 

An information sheet was shown detailing what the study involved including a description of the data 

that was collected and how it would be stored. At this time, participants were randomly allocated to 

one of 7 conditions; an immediate retrieval condition, which directly followed an initial study phase, 

https://prolific.ac/
http://osf.io/8mzyc/
https://code.google.com/archive/p/word2vec/
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or a delayed retrieval condition (taking place either 3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs, or 96 hrs after 

the initial study phase). Before giving informed consent, participants were made aware of which 

condition they have been allocated to. They were told to revisit the experiment website within ±1 

hour of their scheduled retrieval session to complete the task and obtain a full payment. A unique 

participant identifier was then provided by email which was used to start the retrieval session at the 

scheduled time. Participants were prevented from running any phase of the experiment on mobile 

devices such as handheld smartphones or tablets. Additionally, the task prevented participants from 

using devises with a screen resolution less than 600 x 600 pixels. 

Study phase 

During the study phase, a circular dial was visible in the centre of the screen. The task involved learning 

associations between different positions around this circle and specific words displayed on each trial 

(Figure 1A). All 200 word stimuli were presented at least once during the study phase. Words 

belonging to either the manmade or natural sematic categories were assigned to a ‘clustered’ 

condition. As such, they were associated with similar locations around the circle - randomly sampled 

from a von Mises distributions with a fixed width (𝑘 = 2.0), and a fixed mean (randomly chosen for 

each participant). All words belonging to the other semantic category were allocated to a ‘non-

clustered’ condition. As such, they were associated with circular locations that had no consistent mean 

angle (von Mises concentration parameter, 𝑘 < 0.05). The assignment of manmade/natural words to 

the clustered/non-clustered conditions was counterbalanced across participants.  

Each study trial started with an indication of the circular position to be learned (location cue). A red 

cursor was drawn at a particular location along the circle’s perimeter for 2 seconds (Figure 1A). 

Following this, the cursor was removed, and a study word was displayed onscreen for 4 seconds (word 

cue). Finally, with the word still visible, a red cursor was redrawn at a random location. Using the 

mouse/trackpad, participants were then required to verify that they had attended to the trial by 

repositioning the cursor at the cued location. This response window lasted 6 seconds for each trial and 

was followed by a 2-second inter-trail interval. If no response was made within the window, or if the 

response error is greater than 5°, the entire trial was repeated. Pilot data indicated that participants 

rarely repeated a given encoding trial more than 5 times. Nonetheless, to limit trial-to-trial variability 

in the encoding procedure, word cues that are repeated more than 5 times were excluded from the 

analyses. This study procedure is similar to that employed by previous investigations17,18. It is designed 

to ensure that participants attend to both the word and the location enabling an association to be 

learned between them. 
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Prior to starting the study phase, participants watched a short video demonstrating how the session 

was to progress, including instructions on how to make responses (video transcript available at 

http://osf.io/8mzyc/). These instructions emphasised that participants needed to remember the 

word-location associations as they were to be tested on them in the retrieval phase. As an aid to this, 

the video asked participants to imagine an object related to the cue word appearing just beside the 

cued location before responding to each study trial. Following the study phase, participants in the 

immediate retrieval condition completed the retrieval phase. Participants assigned to one of the 

delayed retrieval conditions were reminded of when they needed to revisit the experiment website.  

Test phase 

At test, participants were tasked with recalling each of the 200 word-location associations. As in the 

study phase, a circular dial was visible throughout. On each trial, a cue word was presented onscreen 

and, following a 1 second delay, a red cursor was drawn at a random location (Figure 1B). Participants 

then moved this cursor to the remembered location before making their response with a button press. 

Immediately after this, a prompt was shown asking participants to indicate whether they: (1) 

remembered both the word and its associated location (‘Word + location’), (2) remembered the word 

but not its associated location (‘Word only’), or (3) had forgotten encountering the word (‘Neither’). 

Trails were separated by a 2 seconds inter-trail interval and a response window was imposed such that 

the next trail began automatically if both responses had not been made within 15 seconds (10 sec 

response window for the location judgement, 5 sec response window for the subjective memory 

judgement). We asked participants to be as accurate as possible, while ensuring that a response was 

made on every trial. They were also encouraged to make a best guess when entering location 

responses, even if they had no confidence in the accuracy of this response. 

As in the study phase, all participants were shown a short video demonstrating how the retrieval 

session was to progress (video transcript available at http://osf.io/8mzyc/). After completing the 

retrieval phase, participants were then directed to a short questionnaire requesting a brief description 

of the strategy that they used when encoding and retrieving the word-locations associations. 

Participants were also be asked whether they had slept between the study and retrieval sessions and, 

if so, for how long. Following this, a debriefing sheet detailing the experimental hypotheses was 

provided. If participants in one of the delayed retrieval conditions attempted to start the test session 

more than one hour before their scheduled time slot, they were prevented from running the test and 

asked to return later. If participants missed their scheduled test session by over 1 hour, they were 

directed to a dedicated debriefing sheet informing them that they are unable to participate further. 

This further directed participants back to Prolific where they were reimbursed for the time spent 

http://osf.io/8mzyc/
http://osf.io/8mzyc/
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performing the study session (£3). Participants who returned to the experiment website after 

completing the test session were prevented from running the study and test phases a second time. 

Recruitment protocol 

An initial round of recruitment was run until we had collected 30 usable datasets per retention 

interval. At this point a statistical analysis of the data was performed and recruitment would have 

terminated if the Bayes factors relating to each of our a priori hypotheses were either greater than 10 

(strong evidence in favour of an effect) or less than 0.1 (strong evidence in favour of no effect). If the 

Bayes factors did not show this level of sensitivity, data collection was to proceed in batches that 

added 10 usable datasets per retention interval. We planned to continue this until all Bayes factors 

had met the sensitivity threshold up to a maximum of 60 datasets per retention interval (420 complete 

datasets in total; maximum number dictated by resource constraints). Simulations based on our pilot 

data (see Supplementary Information) predicted that all Bayes factors were likely to reach the 

sensitivity threshold at a sample size of ~26 participants per retention interval. 

Data analysis 

Mixture model estimation 

We simultaneously estimated retrieval probability (accessibility) and retrieval precision for individual 

participants using a probabilistic mixture model. First, we computed the replacement error of each 

response. This was given by the angular difference between a word’s target location at study, and the 

retrieved location at test (see Eq. S1). For the mixture model, angular errors were assumed to be 

drawn from one of two distributions: (1) a circular uniform representing random guesses, and (2) a 

von Mises distribution representing the precision of memory retrieval. Each of these distributions has 

an associated prior probability; a statistic reflecting the overall proportion of responses belonging to 

that distribution. The prior for the von Mises distribution (donated 𝑝) encodes the rate of memory 

retrieval (i.e., retrieval probability; ‘accessibility’). The von Mises distribution has two further 

parameters: a mean 𝜇, and a dispersion statistic 𝑘 (known as the ‘concentration’). We fixed the value 

of 𝜇 to remain at zero, assuming that the average angular error of retrieved responses was always 

zero. The concentration parameter is analogous to the reciprocal of the variance; higher values of 𝑘 

indicate a narrower distribution. As such, 𝑘 reflects the level of retrieval ‘precision’ and increases with 

better performance. 

The parameters 𝑝 (retrieval probability, ‘accessibility’) and 𝑘 (memory precision) were estimated for 

clustered and non-clustered trials (separately) using an expectation-maximization (EM) algorithm 

(detailed in the Supplementary Methods, Eq. S2–S6; MATLAB functions available at 

http://osf.io/8mzyc/). This attempted to identify values of 𝑝 and 𝑘 that maximised the likelihood of 

http://osf.io/8mzyc/
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the observed data. The fit of the resulting mixture model was then compared to a reduced model that 

described all angular errors with a single uniform distribution (i.e., no mnemonic components). This 

comparison was made by calculating the difference in Bayesian information criterion statistics 

between models (∆𝐵𝐼𝐶, see Eq. S7). If the mixture model fitted the data substantially better than the 

reduced model (∆𝐵𝐼𝐶 < -10), the parameters returned by the EM algorithm were accepted. 

When the ∆𝐵𝐼𝐶 was greater than -10 (i.e., the mixture model provided a poor fit to the data relative 

to the reduced model) we used an alternative fitting procedure (see Supplementary Methods for 

details). The EM algorithm often fails to achieve a good fit when accessibility is low (𝑝 ≲ 0.2; see 

Supplementary Methods). It was important to find a valid model fit to these datasets since merely 

excluding them would have resulted in a survivorship bias - overestimating a population’s average 

performance because only the highest performing individuals are included. Here, the parameter 𝑝 was 

systematically varied over a number of steps and 𝑘 was estimated from the corresponding proportion 

of responses with the smallest angular error. This procedure can identify valid model fits as local 

minimum values of the likelihood function that are missed by the EM algorithm. If this produced a fit 

that was substantially better than the reduced model (as above; ∆𝐵𝐼𝐶 < -10), the parameters returned 

were accepted. However, if the alternative fitting procedure failed to return reliable estimates of both 𝑝 and 𝑘 for either the clustered or non-clustered condition, the participant’s entire data set was 

excluded (exclusion criteria 6; see below). 

Measures of memory-related information 

While the model parameters 𝑝 and 𝑘 both reflect components of memory performance, these 

fundamentally different measures are not directly comparable. For instance, equivalent reductions in 

the values of 𝑝 and 𝑘 due to forgetting does not imply similar levels of forgetting in the form of 

accessibility and precision. We therefore use the differential entropy of angular errors to quantify the 

amount of mnemonic information that relates to each of these components. Entropy, denoted 𝐻, 

describes the uncertainty associated with observing a set of responses (i.e., angular errors) from a 

given distribution. If responses are highly uncertain (i.e., angular errors are widely dispersed around 

zero), entropy will be high. This indicates that the distribution generating responses (i.e., the word-

location memories) conveys little positional information. The entropy of a von Mises distribution 

reflecting recollected responses is defined as follows: 

 𝐻(𝑘) = ∫ 𝑓𝑣𝑚(𝜃|𝑘) ∙ log ( 1𝑓𝑣𝑚(𝜃|𝑘))𝑑𝜃𝜋
−𝜋  Eq. 1 
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Which simplifies to: 

 𝐻(𝑘) = log(2𝜋 ∙ 𝐵0(𝑘)) − 𝑘 ∙ 𝐵1(𝑘)𝐵0(𝑘)  Eq. 2 

The term, 𝑓𝑣𝑚(𝜃|𝑘) denotes the probability density function for a von Mises distribution at angle 𝜃, 

with a mean of 0 and concentration of 𝑘. The terms 𝐵0(𝑘) and 𝐵1(𝑘) refer to the modified Bessel 

function of the first kind with orders 0 and 1 (respectively), each evaluated at the point 𝑘. When 𝑘 is 

zero, entropy is at a maxim (𝐻𝑚𝑎𝑥 = log(2𝜋)) and corresponds to that of the circular uniform 

distribution. This would imply that memory provides no positional information at all. In contrast, when 𝑘 is large, (~17.5), entropy is near zero. This would suggest that responses are highly consistent with 

the learnt locations implying a large amount of mnemonic information. Given this, we subtract the 

entropy of recollected responses (𝐻(𝑘)) from the maximum possible entropy (𝐻𝑚𝑎𝑥) to produce a 

measure of mnemonic information, denoted 𝐼𝑘: 

 𝐼𝑘(𝑘) = log(2𝜋) − 𝐻(𝑘) Eq. 3 

This metric is 0 when precision is at a minimum and increases monotonically with more precise 

memories. However, increasing values of 𝑘 to arbitrarily high levels results in only marginal increases 

in  𝐼𝑘. This reflects the fact that, beyond a certain point, increases in 𝑘 produce only a small reduction 

in the angular span of the von Mises distribution. 

Importantly, 𝐼𝑘 is unweighted by the retrieval probability (𝑝) and so does not consider the proportion 

of word-location pairs that are recalled. We therefore define a similar measure of information related 

to retrieval probability, 𝐼𝑝. As above, this is taken as the entropy (or uncertainty) associated with a 

given retrieval probability subtracted from 𝐻𝑚𝑎𝑥. The act of retrieving word-location associations 

rules-out random guesses (which are uniformly distributed). As such, the entropy associated with 

retrieval probability is taken as the uncertainty of random guessing (𝐻𝑚𝑎𝑥) multiplied by the 

proportion of items that are not retrieved (1 − 𝑝). Subtracting this quantity from 𝐻𝑚𝑎𝑥 yields a 

measure of mnemonic information (𝐼𝑝) that is 0 when retrieval probability is minimal, and increases 

linearly to a value of 𝑙𝑜𝑔(2𝜋) when retrieval probability is at a maximum: 

 
𝐼𝑝(𝑝) = log(2𝜋) − (1 − 𝑝) ∙ log(2π)            = 𝑝 ∙ log(2𝜋) Eq. 4 

As well as estimating the degree of mnemonic information associated with 𝑝 and 𝑘 separately, we 

also use a combined measure of mnemonic information to assess overall memory performance. This 
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measure, denoted 𝐼𝑡, reflects the total amount of information retained in memory given how many 

word-location pairs are retrieved, and the precision of the retrieved responses. It is computed by 

taking a sum of the entropies associated with memory recall and random guessing, weighted by 

retrieval probability, and subtracting the result from 𝐻𝑚𝑎𝑥: 

 𝐼𝑡(𝑝, 𝑘) = log(2𝜋) − (𝑝 ∙ 𝐻(𝑘) + (1 − 𝑝) ∙ log(2𝜋)) Eq. 5 

This measure also relates to 𝐼𝑝 and 𝐼𝑘 in the following way: 

 𝐼𝑡 = 𝐼𝑝 ∙ 𝐼𝑘log(2𝜋) Eq. 6 

Statistical modelling 

Data from each participant were included in the analyses provided six criteria were met: (1) the 

participant successfully completed both study and test phases, (2) less than 20% of study trials were 

repeated more than 5 times (due to missed responses or poor replacement accuracy), (3) the number 

of retrieval trials that timed out did not exceed 30 within each condition, (4) the strategy description 

provided by participants at the end of testing does not suggest cheating or a lack of understanding 

regarding the task, (5) the dataset was uncorrupted and free of technical errors, and (6) a mixture 

model could be satisfactorily fit to the participants data as discussed in the methods and 

supplementary information. With regards to criterion 4, three independent raters (lab-members, 

including the 1st and 3rd authors), blind to the experimental conditions, reviewed the strategy 

descriptions and determined whether each participant had followed the task instructions 

appropriately. Individual participants were excluded if at least 2 of the 3 reviewers suspected cheating 

or a misunderstanding of the task. 

Total information content of memory (It) 

Hypotheses 1 and 2 concern the overall rate of forgetting (i.e., the loss mnemonic information 

measured by 𝐼𝑡), and whether clustering of locations for semantically related words improves overall 

memory performance (i.e., clustered vs non-clustered word-location pairs). To test these hypotheses, 

we specified a generalised-linear mixed-effects regression model (GLMM) to predict 𝐼𝑡 within a 2x7 

factorial structure (factor 1: clustering; factor 2: retention interval). Six binary coded predictors 

modelled the effect of each delayed retention interval (3 hrs, 6 hrs, 12 hrs, 24 hrs, 48 hrs, or 96 hrs) 

by contrasting them to the intercept term (representing immediate retrieval). Another binary 

predictor specified the effect of clustering by contrasting clustered vs non-clustered responses. Six 

further predictors coded the interaction between clustering and the delayed retention conditions. 
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In addition to the fixed effects predictors, a set of random effects parameters (2 per participant) were 

included to allow the intercept and clustering terms to freely vary across participants. All elements of 

the associated random effects covariance matrix were fully derived from the data. The model itself 

used a log-link function and was estimated via the maximum pseudolikelihood fitting method 

implemented in the MATLAB Statistics and Machine Learning Toolbox (MathWorks). Given that 𝐼𝑡 is 

bounded by zero, the dispersion of responses was parametrised within the model using the gamma 

distribution. Pilot data (see Supplementary Information) revealed that this distribution provides a 

reasonable fit to the data and is better than all other commonly used distributions within the 

exponential family. 

Table 2 lists each fixed-effects predictor and details the parameter contrast matrices that were used 

to test hypotheses 1 and 2. Hypothesis 1 examines whether there is a monotonic change in the total 

information metric across the 7 non-clustered retention intervals. To implement this, we ran a linear 

contrast that compared estimates of 𝐼𝑡 across the intervals, weighted by the time difference between 

intervals. This required a contrast vector that, when multiplied with the delayed retention parameters 

(D1-D6), yields an effect size representing linear changes in these estimates over time (as in Table 2). 

Notably however, given that the GLMM uses a log link function, each parameter estimate reflects the 

log of 𝐼𝑡. This means that the linear contrast actually tests for exponential changes in 𝐼𝑡 with respect 

to time. Exponential forgetting curves are known to provide a good fit to behaviour in both short-term 

and long-term memory experiments42, as well as our pilot data (discussed in the supplementary 

information). Hypothesis 2 tests the main effect of clustering; i.e., whether there are overall 

differences in the total information metric between the clustered and non-clustered conditions. As 

such, this involved specifying a contrast vector that takes a weighted average across the 7 clustering 

predictors. Further details of how these contrast vectors were computed and applied to test our 

hypotheses are outlined in the Supplementary Methods.  

Specific information content of memory (Ip and Ik) 

Hypotheses 3, 4 and 5 concern differential rates of forgetting for clustered and non-clustered locations 

as measured by the two specific types of mnemonic information: 𝐼𝑝 (accessibility) and 𝐼𝑘 (precision). 

As above, we tested these hypotheses using a generalised-linear mixed-effects regression model 

(GLMM). The measures of mnemonic information, 𝐼𝑝 and 𝐼𝑘, served as outcomes within this model, 

and the predictors constituted a 2x2x7 factorial structure (factor 1: memory type; factor 2: clustering; 

factor 3: retention interval). 
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As before, one binary predictor modelled the effect of clustering while a set of 6 dummy coded 

predictors specified the effect of each delayed retention interval. An additional binary predictor 

represented the difference between information types (𝐼𝑝 vs 𝐼𝑘). Finally, a set of 19 predictors 

modelled all interactions in the 3-factor structure. The model also included a set of random effects 

predictors (3 per participant) enabling the intercept, information type and clustering terms to freely 

vary across participants. All elements of the associated random effects covariance matrix were fully 

determined from the data. The model itself used a log link function, a gamma distribution to 

parameterise dispersion, and was estimated via the maximum pseudolikelihood fitting method. 

Table 3 details how the fixed effect parameters of interest were contrasted in order to test hypotheses 

3, 4, and 5. As in the previous GLMM, two of these involved testing for log-linear differences over time. 

Specifically, hypothesis 3 examined whether there was a two-way interaction between delay and 

information type (specifically in the non-clustered condition), while hypothesis 5 tested for a three-

way interaction between delay, information type and clustering. As above, the contrast vectors for 

these hypotheses were designed to compare all parameter estimates of interest with each other, 

weighted by the time difference between retention intervals. Hypothesis 4 tested for an interaction 

between clustering and information type and therefore constituted a simple weighted average across 

the parameters coding for this effect. Further details of how these contrast vectors were computed 

and applied to test our hypotheses are outlined in the Supplementary Methods.  

Bayesian inference 

Each of our 5 a priori hypotheses were tested by computing Bayes factors in favour of a meaningful 

effect (denoted BF10). Bayes factors greater than 10 indicate that, according to the data, there is at 

least 10 times more evidence in favour of the alternative hypothesis vs the null. Conversely, Bayes 

factors less than 0.1, indicate there is 10 times more evidence in favour of the null hypothesis over an 

alternative. When computing these statistics, we used a Cauchy distribution with a scale parameter of 

0.555 to represent our prior uncertainty of standardised effect sizes (see Eq. S10). This scale factor is 

approximately the median effect size observed in our pilot study (see Supplementary Information). It 

was chosen such that the interval between the expected effect size and zero received a similar prior 

weight to the interval between the expected effect size and infinity. Full details of how these Bayes 

factors were computed are provided in the Bayesian inference section in the Supplementary 

Information. To complement each Bayes factor, standardised effect sizes are also reported. For 

completeness, we also report frequentist statistics, although these are not used to make inferences. 
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Exploratory analyses 

As well as testing our pre-registered hypotheses, we also ran two additional planned exploratory 

analyses relating to the subjective memory judgements at the end of each retrieval trial. Given our 

lack of pilot data in relation to this aspect of the experiment, these are labelled as ‘exploratory’. 

Continued data collection did not depend on the Bayes factors from these analyses as we had no a 

priori way of estimating how many participants would have been required to achieve sensitivity. 

Nonetheless, we report all BFs, standardised effect sizes, and frequentist inferential statistics related 

to these exploratory analyses. 

First, we tested whether the subjective memory judgments provided at the end of each test trial 

suggested differential rates of forgetting for individual words (i.e., item memory) versus forgetting of 

work-location associations (i.e., associative memory). We specified a cumulative link mixed-effects 

regression model using the ‘Ordinal’ package in the R programming language. This accounted for 

relative changes in the proportion of test trials that were assigned either a ‘Word + location’, ‘Word 

only’, or ‘Neither’ response as a function of clustering and retention interval. The analysis therefore 

involved a 2x7 factorial structure with 3 responses categories. Random effects were modelled in the 

same way as in the total information GLMM discussed previously. The model used a logit link function 

and was estimated via the Gauss-Hermite fitting method. As this analysis involved subjective report 

data, it was not known a priori whether metacognitive response biases (e.g., a liberal tendency to 

respond ‘Word only’) would limit data quality and the conclusions that could have been drawn. 

Nonetheless, the model allowed us to assess whether changes in accessibility seen in the pre-

registered analyses were primarily driven by forgetting of individual words (item memory) versus 

remembering the word but forgetting its associated location (associative memory).  

Second, we assessed the relationship between word recognition as measured by subjective report, 

and mixture model estimates of accessibility and precision. Of specific interest was the extent to which 

losses in memory accessibility reflected either: (1) reduced accessibility for the cue word per se, or (2) 

failures to maintain the word-location association (in the presence of item memory for the word). To 

examine this, we re-ran the mixture models and GLMMs described above, but only included test trails 

where participants provided either a ‘Word + location’ or ‘Word only’ response. Excluding ‘Neither’ 

responses resulted in measures of memory accessibility (𝐼𝑝) that reflect participants ability to 

remember the word-location association when the word cue itself was subjectively recognised. 

However, as this analysis was contingent on the proportion of words that receive either a ‘Word + 

location’ or ‘Word only’ response, it was again possible that metacognitive response biases would limit 

data quality. For instance, if ‘Word + location’ or ‘Word only’ responses were only made when 



29 

 

 

recognition strength was very high, only highly memorable trails would be included in the mixture 

model thereby potentially biasing estimates of accessibility and precision. Additionally, limiting the 

number of trails in the analysis is likely to have reduced the reliability of mixture model estimates in a 

way that does not uniformly affect each experimental condition.  

Protocol registration 

The Stage 1 protocol for this Registered Report was accepted in principle on 4th June 2019. The 

protocol, as accepted by the journal, can be found at 

https://doi.org/10.6084/m9.figshare.c.4368464.v1. 

Data availability 

All anonymised behavioural data collected via the online task are freely available on the Open Science 

Framework (OSF) website (http://osf.io/8mzyc/). 

Code availability 

All HTML, PHP, and MATLAB scripts used to run the experimental task and analyse the data, are freely 

available on the OSF website (http://osf.io/8mzyc/). 

  

https://doi.org/10.6084/m9.figshare.c.4368464.v1
http://osf.io/8mzyc/
http://osf.io/8mzyc/
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Figures 

 

Figure 1 

 

Schematic of the experimental procedure. A: Structure of a Study trial. A location cursor was presented for 2 

secs, followed by the word cue. The cursor then reappeared in a randomly chosen location and the participant 

was required to move it back to the recently shown location (to within 5°). B: Structure of a Test trial. A location 

cursor was presented in a random location for 1 sec, followed by a word previously shown at study. The 

participant was required to move the cursor to the remembered location associated with that word (location 

judgement; 10 sec response window). Following this, participants were asked to indicate whether they 

remembered both the word and its associated location, the word alone, or neither of the two (subjective 

judgement; 5 sec response window). 
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Figure 2 

 

Memory performance by condition. Top row: Means (and 95% confidence intervals) for each measure of 

mnemonic information plotted by retention interval and clustering condition; (A). Total information content, 𝐼𝑡. 
(B). Accessibility information content, 𝐼𝑝. (C). Precision information content, 𝐼𝑘. Individual datapoints represent 

participant scores. Bottom row, D: Kernel density estimates plotting the average distributions of angular errors 

in each condition with 95% confidence bounds. Each panel showed the results from a different retention interval 

with 0 hrs on the extreme left and 96 hrs on the extreme right. Blue curves denote estimates from non-clustered 

trials while red curves denote estimates from clustered trials. 
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Figure 3 

 

Model-derived probability estimates for each type of the subjective memory judgment. From left to right, each 

panel plots the proportion of ‘Word + location’ (A), ‘Word only’ (B), and ‘Neither’ responses (C). Note that these 

estimates were returned by a cumulative link mixed-effects regression model. This was estimated from a large 

list of categorical responses coding the subjective judgment that was made on each test trial. As the outcome 

was an ordinal variable, individual datapoints are not plotted. 

 

 

Figure 4 

 

Kullback–Leibler divergence (𝑫𝑲𝑳) by condition. Mean 𝐷𝐾𝐿  estimates as a function of retention interval and 

clustering condition. Error bars represent 95% confidence intervals and individual datapoints depict participant 

scores. Note that lower 𝐷𝐾𝐿  scores indicate a closer correspondence between the absolute position of location 

responses and the experimentally imposed spatial pattern in the clustered condition. 
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Tables 

 

Table 1 

Effect sizes, Bayes factors, and frequentist statistics for each preregistered hypothesis. 95% confidence intervals 

are indicated in square brackets. 

 Cohen’s D BF10 T statistic 95% CI P value 

  

    

Hypothesis 1 

Change in total information across 

delay in the non-clustered 

condition. 

0.314 117 3.787 
(d.f. = 848) 

[0.127, 

0.402] 
< .001 

Hypothesis 2 

Difference in total information 

between clustered and non-

clustered condition. 

0.021 0.054 0.743 
(d.f. = 848) 

[-0.030, 

0.066] 
.458 

Hypothesis 3  

The effect of delay differs between 

accessibility and precision in the 

non-clustered condition. 

0.275 35.1 3.449 
(d.f. = 1696) 

[0.113, 

0.410] 
< .001 

Hypothesis 4 

Clustering differentially effects 

accessibility vs precision. 

0.141 5.98 × 106 6.179 
(d.f. = 1696) 

[0.144, 

0.278] 
< .001 

Hypothesis 5 

Clustering changes the difference 

between accessibility and precision 

as a function of delay. 

0.074 0.188 0.665 
(d.f. = 1696) 

[-0.132, 

0.267] 
.506 
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Table 2 

Parameter contrast matrices for hypotheses 1 and 2 tested by the GLMM of total information (𝐼𝑡). 
 

Regressor name 

C
lu

st
e

re
d

 (
C

) 

D
e

la
y

 1
 (

D
1

) 

D
e

la
y

 2
 (

D
2

) 

D
e

la
y

 3
 (

D
3

) 

D
e

la
y

 4
 (

D
4

) 

D
e

la
y

 5
 (

D
5

) 

D
e

la
y

 6
 (

D
6

) 

  
  

  
C

 *
 D

1
 

  
  

  
C

 *
 D

2
 

  
  

  
C

 *
 D

3
 

  
  

  
C

 *
 D

4
 

  
  

  
C

 *
 D

5
 

  
  

  
C

 *
 D

6
 

 

  

Hypothesis 1 

Change in total 

information across 

delay in the non-

clustered condition. 

0 .299 .261 .187 .037 -.261 -.859 0 0 0 0 0 0 
 

Hypothesis 2 

Difference in total 

information between 

clustered and non-

clustered condition. 

.944 0 0 0 0 0 0 .135 .135 .135 .135 .135 .135 
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Table 3 

Parameter contrast matrices for hypotheses 3-5 for the GLMM for specific information content (𝐼𝑝, 𝐼𝑘). Note, 

not all model parameters are listed; the model additionally includes parameters accounting for the non-

interacting effects of information-type, clustering and delay. T = information type [𝐼𝑝  vs 𝐼𝑘]; C = clustering; D = 

delay condition. 
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Hypothesis 3  

The effect of delay 

will differ between 

accessibility and 

precision in the non-

clustered condition. 

0 .299 .261 .187 .037 -.261 -.859 0 0 0 0 0 0 
 

Hypothesis 4 

Clustering 

differentially effects 

accessibility vs 

precision. 

.944 0 0 0 0 0 0 .135 .135 .135 .135 .135 .135 
 

Hypothesis 5 

Clustering changes 

the difference 

between accessibility 

and precision as a 

function of delay. 

 

0 0 0 0 0 0 0 .299 .261 .187 .037 -.261 -.859 
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Supplementary Information 

“Dissociating memory accessibility and precision in forgetting” 

Sam C Berens, Blake A Richards, & Aidan J Horner 

Supplementary Figures 

 

Supplementary Figure 1. Results of pilot study and simulated data. Top row: Means (and 95% confidence 

intervals) in the pilot data for each measure of mnemonic information plotted by retention interval and 

clustering condition; A. Total information content, 𝐼𝑡. B. Accessibility information content, 𝐼𝑝. C. Precision 

information content, 𝐼𝑘. Individual datapoints represent participant scores after controlling for random 

intercepts (n=73 in both the clustered and non-clustered conditions within each panel). Bottom row: Mean 

estimates for the clustered and non-clustered conditions at each of the 7 retention internals in the main 

experiment; D. Total information content (𝐼𝑡) E. Accessibility (𝐼𝑝) and F. Precision (𝐼𝑘). Estimates are based on 

fitting the pilot data to the exponential model of forgetting in Eq S12.  
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Supplementary Figure 2. Memory performance after excluding trials with no word recognition. Means (and 

95% confidence intervals) for each measure of mnemonic information plotted by retention interval and 

clustering condition; A. Total information content, 𝐼𝑡. B. Accessibility information content, 𝐼𝑝. C. Precision 

information content, 𝐼𝑘. Individual datapoints represent participant scores. 

 

 

 

Supplementary Figure 3. Spatial patterns of participant responses. Kernel density estimates plotting the 

average distributions of replaced locations in each condition with 95% confidence bounds. Importantly, these 

estimates reflect the absolute position of responses relative to centre of the experimentally imposed cluster.  

Each panel showed the results from a different retention interval with 0 hrs on the extreme left and 96 hrs on 

the extreme right. Blue curves denote estimates from non-clustered trials while red curves denote estimates 

from clustered trials.  
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Supplementary Tables 

Supplementary Table 1. Statistical analysis of pilot data. Standardised effect sizes and Bayes factors for 

hypotheses 1-5. As effect sizes were uncertain a priori, the Bayes factors were calculated using a Cauchy scale 

factor of √0.5. 

 

 

 

 

 

 

 

  

 Cohen’s D BF10 

Hypothesis 1 0.486  6.573 

Hypothesis 2 0.545 7.238 x102 

Hypothesis 3 0.523 23.40 

Hypothesis 4 0.596 5.116 x105 

Hypothesis 5 0.645 10.93 
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Supplementary Table 2. Means (and standard deviations) of each outcome measure in the final sample, broken 

down by condition. 

 
Retention 

interval 
𝒑 𝒌 𝑰𝒑 𝑰𝒌 𝑰𝒕 

 

  

    

N
o

n
- 

cl
u

st
e

re
d

 

0 hrs 
.328 

(.150) 

10.733 

(7.645) 

0.603 

(0.275) 

1.413 

(0.441) 

0.490 

(0.314) 

3 hrs 
.285 

(.160) 

10.609 

(10.833) 

0.524 

(0.295) 

1.328 

(0.500) 

0.390 

(0.298) 

6 hrs 
.262 

(.092) 

9.396 

(10.953) 

0.481 

(0.169) 

1.281 

(0.442) 

0.336 

(0.175) 

12 hrs 
.249 

(.100) 

8.772 

(7.871) 

0.458 

(0.184) 

1.288 

(0.419) 

0.311 

(0.141) 

24 hrs 
.240 

(.086) 

9.953 

(9.947) 

0.441 

(0.157) 

1.307 

(0.484) 

0.306 

(0.146) 

48 hrs 
.218 

(.087) 

11.550 

(16.249) 

0.401 

(0.160) 

1.320 

(0.533) 

0.279 

(0.148) 

96 hrs 
.220 

(.075) 

9.753 

(8.816) 

0.404 

(0.137) 

1.341 

(0.423) 

0.278 

(0.088) 

C
lu

st
e

re
d

 

0 hrs 
.370 

(.163) 

9.637 

(7.197) 

0.680 

(0.300) 

1.387 

(0.370) 

0.528 

(0.329) 

3 hrs 
.331 

(.185) 

10.547 

(9.503) 

0.608 

(0.341) 

1.373 

(0.456) 

0.467 

(0.359) 

6 hrs 
.299 

(.114) 

6.436 

(5.776) 

0.549 

(0.209) 

1.127 

(0.396) 

0.341 

(0.197) 

12 hrs 
.289 

(.113) 

6.261 

(5.036) 

0.532 

(0.207) 

1.122 

(0.416) 

0.327 

(0.184) 

24 hrs 
.281 

(.126) 

8.139 

(9.092) 

0.517 

(0.232) 

1.171 

(0.486) 

0.315 

(0.171) 

48 hrs 
.256 

(.101) 

7.315 

(7.938) 

0.470 

(0.185) 

1.127 

(0.473) 

0.283 

(0.164) 

96 hrs 
.237 

(.095) 

8.777 

(10.170) 

0.436 

(0.175) 

1.174 

(0.526) 

0.253 

(0.116) 
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Supplementary Table 3. Results of planned exploratory analysis. Effect sizes, Bayes factors, and frequentist 

statistics for each hypothesis after excluding test trials that received a ‘Neither’ response. 95% confidence 

intervals are indicated in square brackets. 

 Cohen’s D BF10 T statistic 95% CI P value 

  

    

Hypothesis 1 0.458 280 3.985 
(d.f. = 624) 

[0.201, 

0.590] 
< .001 

Hypothesis 2 0.055 0.157 1.467 
(d.f. = 624) 

[-0.014, 

0.100] 
.143 

Hypothesis 3 0.322 7.699 2.886 
(d.f. = 1248) 

[0.087, 

0.458] 
.004 

Hypothesis 4 0.221 2.44 × 1010 7.377 
(d.f. = 1248) 

[0.186, 

0.321] 
< .001 

Hypothesis 5 0.406 4.472 2.613 
(d.f. = 1248) 

[0.074, 

0.518] 
.009 
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Supplementary Methods 

Mixture model estimation 

We first computed the angular error of each response in radians (denoted 𝑥𝑖). This is taken as the 

angular difference between the target location seen at study (𝜃), and the retrieved location entered 

at test (𝜃). 

 𝑥𝑖  =  (𝜃�̂� − 𝜃𝑖) mod 2𝜋 Eq. S1 

Given these errors, estimation via the EM algorithm started by first assigning arbitrary random values 

to the parameters being estimated. The algorithm then progressed in two steps (an E-step and an M-

step) that were repeated in sequence across multiple iterations. During the E-step, we computed a set 

of weightings (𝑤𝑖) representing the probability that individual responses were based on memory 

retrieval (von Mises distributed errors). These weightings were dependent on the angular error 𝑥𝑖 as 

well as the two model parameters 𝑝 and 𝑘. 

 𝑤𝑖(𝑥𝑖  | 𝑝, 𝑘)  =  𝑝 ⋅ 𝑓𝑣𝑚(𝑥𝑖|𝑘)𝑝 ⋅ 𝑓𝑣𝑚(𝑥𝑖|𝑘)  + (1 − 𝑝) ⋅ (2𝜋)−1 Eq. S2 

The quantity 𝑓𝑣𝑚(𝑥𝑖|𝑘) denotes the probability density function for a von Mises distribution at angle 𝑥𝑖 with a mean of 0 and concentration of 𝑘, see1). Note that term (2𝜋)−1 reflects the probability 

density function of the circular uniform distribution for any value of 𝑥𝑖. Given the weighing 𝑤𝑖 for each 

response, we computed new values for each model parameter (the M-step). The parameter 𝑝 was 

computed as follows: 

 𝑝 = ∑ 𝑤𝑖𝑛𝑛
𝑖 = 1  Eq. S3 

To re-estimate the parameter 𝑘, we first computed the population resultant vector (𝑟), the average of 

all response errors weighted by the probability that they belong to the von Mises distribution (𝑤𝑖). 
 𝑟 = real (∑ (𝑤𝑖 ∙ exp(𝑗 ∙ 𝑥𝑖))𝑛𝑖=1 ∑ 𝑤𝑖𝑛𝑖=1 ) Eq. S4 

Where 𝑗 denotes the imaginary unit. The statistic 𝑟 was then converted into the concentration 

parameter 𝑘, using an approximation provided by Fisher1. 
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 𝑘 =
{  
  2𝑟 + 𝑟3 + 5𝑟56 , 𝑟 < 0.53−0.4 + 1.39𝑟 + 0.431 − 𝑟 , 0.53 ≤ 𝑟 < 0.8513𝑟 − 4𝑟2 + 𝑟3 , 𝑟 ≤ 0.85  Eq. S5 

This approximation of 𝑘 is known to be heavily biased when it is based on fewer than 15 data points 

(i.e., when 𝑝 is low2). As such, in a final step, we applied the following correction to estimates of 𝑘 as 

suggested by Best and Fisher2: 

 𝑘∗ = {  
  𝑘 , 𝑛 ∙ 𝑝 > 15
{  
  (𝑛 ∙ 𝑝 − 1)3 ∙ 𝑘𝑛 ∙ 𝑝(𝑛2 ∙ 𝑝2 + 1) , 𝑘 ≥ 2max(𝑘 − 2𝑛 ∙ 𝑝 ∙ 𝑘 , 0), 𝑘 < 2 , 𝑛 ∙ 𝑝 ≤ 15 Eq. S6 

Where 𝑛 is the number of word-location trails (in this case 100), and 𝑘∗is the adjusted estimate of 𝑘. 

These estimation steps repeated until the negative log-likelihood (𝑁𝐿𝐿) of the model (i.e., the 

goodness-of-fit), converged to a stable value. The EM algorithm is sensitive to the starting values 

assigned to each parameter and can converge at local minimum values of the 𝑁𝐿𝐿 function. As such, 

each estimation was run with 17 unique starting points using 17 linearly spaced values of 𝑝 and a 

starting value of 𝑘 = 2 each time. These starting points were found to yield the most accurate results 

when analysing pilot data. The iteration with the lowest 𝑁𝐿𝐿 was then selected as the final model. 

Assessing model fit  

In cases where a participant’s retrieval probability was low (𝑝 ≲ 0.2), the EM algorithm may have failed 

to converge or may have incorrectly fit a wide von Mises distribution indistinguishable from a uniform 

(𝑘 ≈ 0.1). This latter case results in inflated estimates of retrieval probability since the similarly shaped 

uniform and von Mises distributions will provide equal weightings to all data points (i.e., 𝑤 ≈ 0.5). This 

pathological case can be identified by comparing complexity-adjusted measures of goodness-of-fit 

between the final mixture model and a reduced model that describes all data points with a single 

uniform distribution. Here, we used the difference in the Bayesian information criterion 

(denoted ∆𝐵𝐼𝐶) to make this comparison3. Given that the mixture model has 2 free parameters, 𝑝 and 𝑘, and the reduced model has no free parameters, the ∆𝐵𝐼𝐶 was computed as follows: 

 ∆𝐵𝐼𝐶 = 2 ∙ (log(𝑛) − log(�̂�𝑚) + log(𝐿𝑢)) Eq. S7 
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The term, log(�̂�𝑚) denotes the log-likelihood of the mixture model, and log(𝐿𝑢) denotes the log-

likelihood of the reduced model, in this case, a constant value of −𝑛 ∙ log(2𝜋). As such, lower (more 

negative) values of ∆𝐵𝐼𝐶 indicate that the mixture model provides a better fit to the data than the 

reduced model after accounting for the additional complexity. We took ∆𝐵𝐼𝐶 values of -10 or below 

to indicate that the model had converged properly, and the parameters were reliable. This threshold 

is often used to represent strong evidence for the more complex model4 and we found it to reliably 

distinguish pathological and valid solutions in our pilot data. 

Alternative fitting procedure 

In cases were the EM algorithm returned a ∆𝐵𝐼𝐶 greater than the -10 threshold, or failed to converge 

altogether, we attempted to identify a valid fit via an alternative search procedure. At first, this 

involved explicitly varying the retrieval probability (𝑝) over a number of steps (from 𝑝 = 0.02 to 0.3; 2-

30 words) before estimating 𝑘 and the 𝑁𝐿𝐿 (as above) from the 𝑝 ∙ 𝑛 most accurate responses (a so-

called ‘hard-clustering’ approach). This often identifies local minimum values of the 𝑁𝐿𝐿 function that 

are missed by the EM algorithm. We accepted mixture model estimates identified in this way as long 

as the corresponding ∆𝐵𝐼𝐶 statistic was below our -10 threshold. Importantly however, this procedure 

often returns estimates of 𝑘 that are not reliable when based on fewer than 8 responses, even after 

applying the correction expressed in Eq. S6 (singularities can result, causing 𝑘 to become arbitrary 

large). We therefore excluded data from participants when this was the case. If no mixture model 

could be fit to a participant’s data such that the ∆𝐵𝐼𝐶 statistic was less than -10, the participant was 

excluded from further statistical analyses. 

Linear contrasts 

Hypotheses 1, 3, and 5, involved testing for differences or interactions across the 7 retention intervals. 

As stated in the main text, this entails contrasts that are sensitive to linear changes in the GLMM 

parameter estimates over time. To implement this, we specified a 1-by-6 contrast vector, 𝐻 =[ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6], that evaluated differences between pairs of parameters, and weighted these 

differences by the time between retention intervals. Each element of 𝐻 was given by the following 

expression: 

 ℎ𝑖 = ∑ (𝑇𝑎 − 76 ∙ 𝑇𝑖)6
𝑎=1  Eq. S8 

Where, 𝑇 is a 6D vector encoding the retention time (in hours) of each delayed interval: 𝑇 = [3,6, 12, 24, 48, 96]. The scaling factor of 7/6 ensured that each delayed retention interval (𝑖) was 

compared to the immediate retrieval condition (represented by the intercept term) as well as every 
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other delayed condition. The resulting vector was then scaled to have a unit length by dividing each 

element by the overall magnitude. This produced a set of contrast weights that linearly decreased as 

a function of retention time. Consequently, performing a matrix multiplication between the contrast 

vector and a column vector of parameter estimates (i.e., 𝐻𝛽) yielded a scalar value representing the 

degree of co-linearity between 𝐻 and 𝛽. Note that this matrix multiplication is equivalent to taking 

the dot product between 𝐻 and 𝛽 which returns the magnitude of the projection of 𝛽 onto 𝐻. 

Hypotheses 2 and 4, involved testing differences between clustered and non-clustered conditions 

averaged over the 7 retention intervals. Accordingly, contrast vectors for these hypotheses weighted 

parameter estimates by their relative contributions to the clustered vs non-clustered effect. In both 

hypotheses 2 and 4, one fixed effect parameter contributed to the effect of clustering across all 

retention intervals and so was weighted with a factor of 7. Six other parameters each contributed to 

one of the delayed retention conditions and so was weighted by a factor of 1. Given these weightings, 

the contrast vector was then scaled to have a unit length by dividing each element by the overall 

magnitude. 

Bayesian inference 

In testing our a priori hypotheses, we computed BF10 as follows: 

 𝐵𝐹10 = ∫ Pr(𝐷𝑎𝑡𝑎|𝐻1, 𝜃) ∙ 𝜋1(𝜃)  𝑑𝜃 𝜃∈Θ Pr(𝐷𝑎𝑡𝑎|𝐻0)  Eq. S9 

Pr(𝐷𝑎𝑡𝑎|𝐻1, 𝜃) is a normal distribution encoding the likelihood of the model parameters in 𝜃 under 

the alternative hypothesis (H1), and Θ denotes the set of all possible parameters for H1 (i.e., the 

parameter space). Additionally, 𝜋1 refers to the prior distribution of these parameters. We used a 

Cauchy distribution as the prior 𝜋1, see5: 

 𝜋1(𝜃) =  Γ(1 + 𝑑2 ) ∙ 𝛾Γ (12) ∙ 𝜋𝑑2 ∙ (𝛾2 +∑ 𝜃𝑖2)𝑑𝑖=1 1+𝑑2  Eq. S10 

Where Γ denotes the gamma function, 𝑑 is the dimensionality of the Cauchy distribution (i.e., the 

model degrees of freedom which is 1 for all a priori hypotheses), and 𝛾 is the Cauchy scale parameter. 

Note that 𝜋 on the right-hand side of Eq. S10 refers to the circle constant. Across each of our 

hypotheses, we fixed 𝛾 = 0.555. 
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In order to evaluate Pr(𝐷𝑎𝑡𝑎) in both the denominator and numerator of Eq. S9, the parameters 

returned by each GLMM (𝛽) were multiplied by the contrast vector under test (𝐻, i.e., the vectors 

listed in tables 1 and 2). This resulted in raw effect sizes (𝑧 = 𝐻𝛽) that were standardised in order to 

be consistent with our Cauchy prior. This was achieved by dividing out the standard deviation of 𝑧 

obtained by multiplying the population covariance matrix (denoted 𝑪) with 𝐻, and then taking the 

square root: √(𝐻𝑪𝐻𝑇), where 𝑇 represents the transpose operator. Finally, the variance for the 

normal distribution that encodes Pr(𝐷𝑎𝑡𝑎) was given by scaling the variance of the sampling 

distribution by the same standard deviations used previously. Using these statistics, both Pr(𝐷𝑎𝑡𝑎|𝐻1, 𝜃) and Pr(𝐷𝑎𝑡𝑎|𝐻0) were evaluated with the latter being the height of this distribution 

at the zero vector. 

As well as providing Bayes factors, we report Cohen’s D effect sizes for each hypothesis. This statistic 

was given by the following: 

 𝑑 =  √(𝐻𝛽)2𝐻𝑪𝐻𝑇 Eq. S11 

MATLAB functions implementing all the above computations are available at http://osf.io/8mzyc/. 

Pilot study 

We performed a lab-based, pilot study with 73 participants to validate our experimental design and 

generate estimated effect sizes for a sample size computation. This first involved parametrising the 

rate of forgetting for each measure of mnemonic information, in each condition. Subsequently, we 

used this parametrisation to simulate the main experiment and estimate the level of statistical power 

for a given number of participants. 

The pilot study involved a similar task to that described above but did not include a subjective memory 

judgment at the end of each test trial. Also, instead of collecting data across 7 retention intervals, the 

pilot was limited to 3 retention intervals; one immediate test condition (0 hrs; n = 36), and two delayed 

test conditions - 24 hrs (n = 17) and 168 hrs (i.e., 7 days, n = 20). Given this data, we then performed 

the statistical analyses described previously with the exception that each mixed-effects model only 

included two delayed retention regressors. Supplementary Figure 1 displays mean estimates of 𝐼𝑡, 𝐼𝑝 

and 𝐼𝑘 in each condition, and test statistics relating to each of our principal hypotheses are listed in 

Supplementary Table 1. These pilots’ results provide evidence in favour of each of our a priori 

hypotheses (BFs > 6). 

http://osf.io/8mzyc/
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We also acquired online pilot data for the immediate test condition (0 hrs; n = 27), that showed 

comparable levels of performance and variability (in standard deviation units) relative to the lab-based 

pilot data: Clustered condition - Online: 𝐼𝑝= 0.493 (0.202), 𝐼𝑘= 1.187 (0.379); In-lab: 𝐼𝑝= 0.587 (0.392), 𝐼𝑘= 1.346 (0.455); Non-clustered condition - Online: 𝐼𝑝= 0.377 (0.166), 𝐼𝑘= 1.404 (0.566); In-lab: 𝐼𝑝= 0.499 (0.355), 𝐼𝑘= 1.404 (0.518). 

Parametrisation of forgetting 

Given the pilot data, we used a model of exponential decay to predict the rate of forgetting for 𝐼𝑡, 𝐼𝑝 

and 𝐼𝑘 in the main experiment. Exponential decay is commonly used to model forgetting and is known 

to provide a good fit to behaviour in both short-term and long-term memory experiments6. Based on 

our mean estimates of 𝐼𝑝 and 𝐼𝑘 at each timepoint, we fitted the following model to these measures 

for clustered and non-clustered conditions (separately): 

 𝑦(𝑡) = 𝛼 +  𝛽 ∙ exp(−𝜆 ∙ 𝑡) Eq. S12 

Where, 𝑡 denotes the length of the retention interval (in hours), and 𝑦 denotes the measure of 

mnemonic information being modelled (i.e., 𝐼𝑡, 𝐼𝑝 or 𝐼𝑘 in either the clustered or non-clustered 

condition). The free parameters 𝛼, 𝛽, and 𝜆 were estimated via the nonlinear least squares fitting 

method implemented in the MATLAB curve fitting toolbox. The fit of this model across each measure 

and condition was good; R2 = .984. 

Sample size computation 

We ran simulations of the main experiment to estimate the sample size that would be required to 

achieve Bayes factors greater than 10 in favour of our a priori hypotheses. To do this, we used the 

above parametrisation of forgetting to generate mean estimates of 𝐼𝑡, 𝐼𝑝 and 𝐼𝑘 for the clustered and 

non-clustered conditions across all 7 retention intervals (Supplementary Figure 1). These means were 

then converted into hypothesised parameter estimates for the two GLMMs that constitute the main 

analysis. Variance-covariance matrices for these parameter estimates were also computed from the 

pilot analyses. Here, covariance components relating to each model term were pooled across 

retention intervals, and then redistributed into a larger matrix that included additional rows and 

columns for each of the 7 retention intervals. Finally, we rescaled these covariance matrices to reflect 

different samples sizes and performed Bayesian test for each of our five hypotheses. This revealed 

that a sample size of ~26 participants per retention interval condition should have yielded BF10 

statistics greater than 10 (given the effect sizes we observed in the pilot study). 
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Kernel density estimation 

We produced kernel density estimates characterising the distribution of location responses7. These 

estimates served three purposes: (1) to plot average distributions of angular errors in each condition 

(as in Figure 2B), (2) to plot the spatial distribution of responses relative to the experimentally imposed 

pattern in the clustered condition (as in Supplementary Figure 2), and (3) to compute the Kullback–

Leibler divergence (𝐷𝐾𝐿) between the spatial distribution of participants’ responses, and the pattern 

of studied locations in the clustered condition (see below). For a given set of 𝑛 responses (𝜃�̂� ∈ Θ̂; e.g. 

all responses to clustered trails from one participant), the kernel density estimates (𝑓𝑘𝑑) at each 

position (𝑡) in the interval (−𝜋, 𝜋] is given by the following:  

 𝑓𝑘𝑑(𝑡 | Θ̂, 𝑘)  =  1𝑛 ∙∑𝑓𝑣𝑚 ((𝑡 − 𝜃�̂�) mod 2𝜋 | 𝑘)𝑛
𝑖=1  Eq. S13 

As before, 𝑓𝑣𝑚 denotes the probability density function for a von Mises distribution with a mean 

parameter of 0 and concentration of 𝑘. Here, 𝑘 acts as a smoothing parameter, often referred to as 

the bandwidth, that spreads the density function around each response in 𝜃. For all uses in the current 

study, 𝑘 was set to 2 as this provided smooth and reliable estimates in general (although, we note that 

the choice of 𝑘 did not significantly alter the results). Importantly, depending on the purpose of the 

kernel density estimates, the responses in Θ̂ were either angular errors in each condition, or angular 

differences between responses and the mean position of the experimentally imposed spatial cluster. 

The former case allowed us to estimate kernel density functions of angular errors. The latter allowed 

us to estimate spatial density functions of the responses themselves with location 𝑡 = 0 

corresponding to the centre of the cluster. 

Kullback–Leibler divergence 

Once the spatial distribution of responses had been estimated (𝑓𝑘𝑑(𝑡 |Θ̂, 2), see above), the Kullback–

Leibler divergence8 (𝐷𝐾𝐿) between this and the experimentally imposed pattern in the clustered 

condition was given by the following:  

 𝐷𝐾𝐿(Θ̂) = ∫ 𝑓𝑣𝑚(𝑡|2) ∙ log ( 𝑓𝑣𝑚(𝑡|2)𝑓𝑘𝑑(𝑡 | Θ̂, 2))𝑑𝑡𝜋
−𝜋  Eq. S14 

Note that the value of 2 used as a parameter for the kernel density estimate (𝑓𝑘𝑑) donates the 

bandwidth of the kernel. In contrast, the value of 2 used as a parameter for the von Mises probability 

density function (𝑓𝑣𝑚), reflects the concentration of the experimentally imposed spatial pattern. 
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