14 research outputs found

    How nutrition and the maternal microbiota shape the neonatal immune system.

    Get PDF
    The mucosal surfaces of mammals are densely colonized with microorganisms that are commonly referred to as the commensal microbiota. It is believed that the fetus in utero is sterile and that colonization with microorganisms starts only after birth. Nevertheless, the unborn fetus is exposed to a multitude of metabolites that originate from the commensal microbiota of the mother that reach systemic sites of the maternal body. The intestinal microbiota is strongly personalized and influenced by environmental factors, including nutrition. Members of the maternal microbiota can metabolize dietary components, pharmaceuticals and toxins, which can subsequently be passed to the developing fetus or the breast-feeding neonate. In this Review, we discuss the complex interplay between nutrition, the maternal microbiota and ingested chemicals, and summarize their effects on immunity in the offspring

    Toxicity of environmental lead and the influence of intestinal absorption in children

    No full text
    © Freund Publishing HouseExposure to metals, particularly lead, remains a widespread issue that is associated with historical and current industrial practices. Whereas the toxic properties of metals are well described, exposure to metals per se is only one of many factors contributing to elevated blood metal concentrations and their consequent health effects in humans. The absorbed dose of metal is affected by geochemical, biochemical, and physiological parameters that influence the rate and extent of absorption. In children, the interplay among these factors can be of critical importance, especially when biochemical and physiological processes might not have matured to their normal adult status. Such immaturity represents an elevated risk to metal-exposed children because they might be more susceptible to enhanced absorption, especially via the oral route. This review brings together the more recent findings on the physiological mechanisms of metal absorption, especially lead, and examines several models that can be useful in assessing the potential for metal uptake in children.L.M. Heath, K.L. Soole, M. McLaughlin, G.T.A. McEwan, J.W. Edwardshttp://www.scopus.com/scopus/record/display.url?eid=2-s2.0-1242345171&view=basic&origin=inward&txGid=sYXEr2JmKUC1bUgWZ7-G6e7%3a

    Delayed response in a plant-pollinator system to experimental grassland fragmentation

    No full text
    The fragmentation of natural habitat is considered to be a major threat to biodiversity. Decreasing habitat quality and quantity caused by fragmentation may lead to a disruption of plant-pollinator interactions and to a reduction in sexual reproduction in plant species. We conducted a 6-year field experiment to investigate the effects of small-scale fragmentation on plant-pollinator interactions and genetic diversity in the self-compatible Betonica officinalis. We examined the abundance and composition of pollinators, the foraging behaviour of bumblebees and the performance, outcrossing rate and genetic diversity of B. officinalis after 2 and 6 years in experimentally fragmented nutrient-poor, calcareous grassland in the northern Swiss Jura mountains. Fragments of different size (2.25 and 20.25 m(2)) were isolated by a 5-m-wide strip of frequently mown vegetation. Control plots of corresponding size were situated in adjacent undisturbed grassland. Experimental grassland fragmentation altered the composition of B. officinalis pollinators and reduced their flower visitation rate. Furthermore, the foraging behaviour of bumblebees was changed in the fragments. After 6 years of fragmentation seed weight was higher in fragments than in control plots. However, the densities of B. officinalis rosettes and inflorescences, plant height and inflorescence length were not affected by fragmentation. The outcrossing frequency of B. officinalis growing in fragments was reduced by 15% after 2 years and by 33% after 6 years of experimental fragmentation. This resulted in a significant reduction of the genetic diversity in seedlings emerging in fragments after 6 years. Our study shows that small-scale habitat fragmentation can disturb the interaction between B. officinalis and pollinators resulting in a reduced outcrossing frequency and genetic diversity in plants growing in fragments. However, the response to fragmentation was considerably delayed. This finding strengthens theclaim for long-term field experiments with proper replications and controls to assess delayed effects of habitat fragmentatio
    corecore