54 research outputs found

    Validation of proteins associated with pathological damage in human tuberculosis granulomas: study protocol [version 1; peer review: 2 approved]

    Get PDF
    The presence of the Tuberculosis (TB) disease-causing pathogen, Mycobacterium Tuberculosis (Mtb), induces the development of a pathological feature termed granuloma, which the host uses to contain the bacteria. However, the granuloma may dissociate resulting in detrimental caseation of the lung. The disease contributes to a growing global burden of lung function challenges, warranting for more understanding of the TB-induced immunopathology. The current study aims to explore in detail host factors that drive pathological features of TB contributing to extensive lung tissue destruction. Lung tissue sections obtained from patients undergoing surgical resection will be processed and analyzed using histopathological assays including Immunohistochemistry, Immunofluorescence, Hematoxylin and Eosin staining and Laser Capture Microdissection. The findings will provide key host factors that associate with exacerbated lung immunopathology during TB

    Dectin-1-Syk-CARD9 Signaling Pathway in TB immunity

    Get PDF
    One of the first steps toward mounting an effective immune response to Mycobacterium tuberculosis (Mtb) is recognition of the pathogen through pattern-recognition receptors (PRRs) expressed by innate immune cells. Activation of the PRR Dectin-1 by an unknown mycobacterial ligand triggers an intracellular signaling cascade involving numerous proteins, including spleen tyrosine kinase, protein kinase C-delta, and caspase recruitment domain family member 9, some of which have been shown to influence host immune response to TB infection. Here, we review the role of Dectin-1 signaling pathway in anti-mycobacterial immunity and discuss its contribution in the control of Mtb infection, and potential applications in TB vaccine adjuvanticity

    Lactate signalling regulates fungal β-glucan masking and immune evasion

    Get PDF
    AJPB: This work was supported by the European Research Council (STRIFE, ERC- 2009-AdG-249793), The UK Medical Research Council (MR/M026663/1), the UK Biotechnology and Biological Research Council (BB/K017365/1), the Wellcome Trust (080088; 097377). ERB: This work was supported by the UK Biotechnology and Biological Research Council (BB/M014525/1). GMA: Supported by the CNPq-Brazil (Science without Borders fellowship 202976/2014-9). GDB: Wellcome Trust (102705). CAM: This work was supported by the UK Medical Research Council (G0400284). DMM: This work was supported by UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/K000306/1). NARG/JW: Wellcome Trust (086827, 075470,101873) and Wellcome Trust Strategic Award in Medical Mycology and Fungal Immunology (097377). ALL: This work was supported by the MRC Centre for Medical Mycology and the University of Aberdeen (MR/N006364/1).Peer reviewedPostprin

    Protein kinase C-delta (PKC delta), a marker of inflammation and tuberculosis disease progression in humans, is important for optimal macrophage killing effector functions and survival in mice (vol 11, pg 496, 2018)

    Get PDF
    We previously demonstrated that protein kinase C-δ (PKCδ) is critical for immunity against Listeria monocytogenes, Leishmania major, and Candida albicans infection in mice. However, the functional relevance of PKCδ during Mycobacterium tuberculosis (Mtb) infection is unknown. PKCδ was significantly upregulated in whole blood of patients with active tuberculosis (TB) disease. Lung proteomics further revealed that PKCδ was highly abundant in the necrotic and cavitory regions of TB granulomas in multidrug-resistant human participants. In murine Mtb infection studies, PKCδ−/− mice were highly susceptible to tuberculosis with increased mortality, weight loss, exacerbated lung pathology, uncontrolled proinflammatory cytokine responses, and increased mycobacterial burdens. Moreover, these mice displayed a significant reduction in alveolar macrophages, dendritic cells, and decreased accumulation of lipid bodies (lungs and macrophages) and serum fatty acids. Furthermore, a peptide inhibitor of PKCδ in wild-type mice mirrored lung inflammation identical to infected PKCδ−/− mice. Mechanistically, increased bacterial growth in macrophages from PKCδ−/− mice was associated with a decline in killing effector functions independent of phagosome maturation and autophagy. Taken together, these data suggest that PKCδ is a marker of inflammation during active TB disease in humans and required for optimal macrophage killing effector functions and host protection during Mtb infection in mice

    Dectin-1: a role in antifungal defense and consequences of genetic polymorphisms in humans

    Get PDF
    The clinical relevance of fungal infections has increased dramatically in recent decades as a consequence of the rise of immunocompromised populations, and efforts to understand the underlying mechanisms of protective immunity have attracted renewed interest. Here we review Dectin-1, a pattern recognition receptor involved in antifungal immunity, and discuss recent discoveries of polymorphisms in the gene encoding this receptor which result in human disease

    Tissue‐resident innate immunity in the lung

    No full text
    The lung is a unique organ which must protect against inhaled pathogens and toxins, without mounting a disproportionate response against harmless particulate matter and without compromising its vital function. Tissue-resident immune cells within lung provide local immunity and protection from infection but are also responsible for causing disease when dysregulated. There is a growing appreciation of the importance of tissue-resident memory T-cells to lung immunity, but non-recirculating, tissue-resident, innate immune cells also exist. These cells provide the first line of defence against pulmonary infection and are essential for co-ordinating the subsequent adaptive response. In this review we discuss the main lung-resident innate immune subsets and their functions in common pulmonary diseases, such as influenza, bacterial pneumonia, asthma and inflammatory disorders

    Intervening along the spectrum of tuberculosis: meeting report from the World TB Day nanosymposium in the Institute of Infectious Disease and Molecular Medicine at the University of Cape Town [version 4; peer review: 2 approved]

    Get PDF
    Tuberculosis (TB), caused by the highly infectious Mycobacterium tuberculosis, remains a leading cause of death worldwide, with an estimated 1.6 million associated deaths reported in 2017. In South Africa, an estimated 322,000 (range 230,000-428,000) people were infected with TB in 2017, and a quarter of them lost their lives due to the disease. Bacille Calmette-Guérin (BCG) remains the only effective vaccine against disseminated TB, but its inability to confer complete protection against pulmonary TB in adolescents and adults calls for an urgent need to develop new and better vaccines. There is also a need to identify markers of disease protection and develop novel drugs. It is within this backdrop that we convened a nanosymposium at the Institute of Infectious Disease and Molecular Medicine at the University of Cape Town to commemorate World TB Day and showcase recent findings generated by early career scientists in the institute. The speakers spoke on four broad topics: identification of novel drug targets, development of host-directed drug therapies, transmission of TB and immunology of TB/HIV co-infections

    Intervening along the spectrum of tuberculosis: meeting report from the World TB Day nanosymposium in the Institute of Infectious Disease and Molecular Medicine at the University of Cape Town [version 1; peer review: 1 approved]

    Get PDF
    Tuberculosis, caused by the highly infectious Mycobacterium tuberculosis, remains a leading cause of death worldwide, with an estimated 1.6 million associated deaths reported in 2017. In South Africa, an estimated 322,000 people were infected with TB in 2017, and a quarter of them lost their lives due to the disease. Bacille Calmette-Guérin remains the only effective vaccine against disseminated TB, but its inability to confer complete protection against pulmonary TB in adolescents and adults calls for an urgent need to develop new and better vaccines. There is also a need to identify markers of disease protection and develop novel drugs. On March 25th 2019, the Institute of Infectious Disease and Molecular Medicine at the University of Cape Town hosted the second annual World TB Day nanosymposium. The theme of the nanosymposium was “Intervening across the spectrum of TB II” and the goal was to commemorate World TB Day by showcasing research insights shared by early-career scientists and researchers in the field. The speakers spoke on four broad topics: identification of novel drug targets, development of host-directed drug therapies, transmission of tuberculosis and immunology of TB/HIV co-infections. Assistant Professor Bryan Bryson gave a highly interesting keynote address that showcased the application of engineering tools to answer fundamental biological questions, particularly in the context of tuberculosis
    corecore