120 research outputs found

    Post exposure prophylaxis of HIV transmission after occupational injuries in Queen Elizabeth Central Hospital, Blantyre, Malawi, 2003 – 2008

    Get PDF
    Health care worker (HCW) in Malawi may acquire HIV infection through occupational injuries, in particular since HIV prevalence among inpatients and incidence of occupational injuries are high. A post exposure prophylaxis (PEP) programme for occupational injuries at QueenElizabeth Central Hospital (QECH) commenced in 2003. We performed an audit of this programme from 2003 through 2008. 203 Occupational injuries were reported. The majority were needle stick injuries (76.3%). Half of the clients were in a training position. A dual ART regimen was most frequently prescribed. Triple therapy use increased over time and wasmore frequent in expatriate students. Many nurses and clinical officers were not fully vaccinated for HBV. Based on previous incidence data, occupational injuries were likely to be underreported. Data on side effects were incomplete, however PEP discontinuation due to side effects occurredonly twice. Follow up visits were poorly attended, therefore the efficacy of PEP could not be evaluated. Prevention efforts for occupational injuries should be increased and specifically target HCWs in training positions.Measures to improve quality of the PEP programme include effective publicity campaigns, compulsory Hepatitis B vaccination and active tracing of HCWs who default follow up after PEP

    A network medicine approach to quantify distance between hereditary disease modules on the interactome

    Get PDF
    We introduce a MeSH-based method that accurately quantifies similarity between heritable diseases at molecular level. This method effectively brings together the existing information about diseases that is scattered across the vast corpus of biomedical literature. We prove that sets of MeSH terms provide a highly descriptive representation of heritable disease and that the structure of MeSH provides a natural way of combining individual MeSH vocabularies. We show that our measure can be used effectively in the prediction of candidate disease genes. We developed a web application to query more than 28.5 million relationships between 7,574 hereditary diseases (96% of OMIM) based on our similarity measure

    Generic 3D Representation via Pose Estimation and Matching

    Full text link
    Though a large body of computer vision research has investigated developing generic semantic representations, efforts towards developing a similar representation for 3D has been limited. In this paper, we learn a generic 3D representation through solving a set of foundational proxy 3D tasks: object-centric camera pose estimation and wide baseline feature matching. Our method is based upon the premise that by providing supervision over a set of carefully selected foundational tasks, generalization to novel tasks and abstraction capabilities can be achieved. We empirically show that the internal representation of a multi-task ConvNet trained to solve the above core problems generalizes to novel 3D tasks (e.g., scene layout estimation, object pose estimation, surface normal estimation) without the need for fine-tuning and shows traits of abstraction abilities (e.g., cross-modality pose estimation). In the context of the core supervised tasks, we demonstrate our representation achieves state-of-the-art wide baseline feature matching results without requiring apriori rectification (unlike SIFT and the majority of learned features). We also show 6DOF camera pose estimation given a pair local image patches. The accuracy of both supervised tasks come comparable to humans. Finally, we contribute a large-scale dataset composed of object-centric street view scenes along with point correspondences and camera pose information, and conclude with a discussion on the learned representation and open research questions.Comment: Published in ECCV16. See the project website http://3drepresentation.stanford.edu/ and dataset website https://github.com/amir32002/3D_Street_Vie

    T cell cytolytic capacity is independent of initial stimulation strength.

    Get PDF
    How cells respond to myriad stimuli with finite signaling machinery is central to immunology. In naive T cells, the inherent effect of ligand strength on activation pathways and endpoints has remained controversial, confounded by environmental fluctuations and intercellular variability within populations. Here we studied how ligand potency affected the activation of CD8+ T cells in vitro, through the use of genome-wide RNA, multi-dimensional protein and functional measurements in single cells. Our data revealed that strong ligands drove more efficient and uniform activation than did weak ligands, but all activated cells were fully cytolytic. Notably, activation followed the same transcriptional pathways regardless of ligand potency. Thus, stimulation strength did not intrinsically dictate the T cell-activation route or phenotype; instead, it controlled how rapidly and simultaneously the cells initiated activation, allowing limited machinery to elicit wide-ranging responses

    Decoding the regulatory network of early blood development from single-cell gene expression measurements.

    Get PDF
    Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.We thank J. Downing (St. Jude Children's Research Hospital, Memphis, TN, USA) for the Runx1-ires-GFP mouse. Research in the authors' laboratory is supported by the Medical Research Council, Biotechnology and Biological Sciences Research Council, Leukaemia and Lymphoma Research, the Leukemia and Lymphoma Society, Microsoft Research and core support grants by the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute. V.M. is supported by a Medical Research Council Studentship and Centenary Award and S.W. by a Microsoft Research PhD Scholarship.This is the accepted manuscript for a paper published in Nature Biotechnology 33, 269–276 (2015) doi:10.1038/nbt.315

    Resolving early mesoderm diversification through single-cell expression profiling.

    Get PDF
    In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.We thank M. de Bruijn, A. Martinez-Arias, J. Nichols and C. Mulas for discussion, the Cambridge Institute for Medical Research Flow Cytometry facility for their expertise in single-cell index sorting, and S. Lorenz from the Sanger Single Cell Genomics Core for supervising purification of Tal1−/− sequencing libraries. ChIP-seq reads were processed by R. Hannah. Research in the authors’ laboratories is supported by the Medical Research Council, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, Bloodwise, the Leukemia and Lymphoma Society, and the Sanger-EBI Single Cell Centre, and by core support grants from the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute and by core funding from Cancer Research UK and the European Molecular Biology Laboratory. Y.T. was supported by a fellowship from the Japan Society for the Promotion of Science. W.J. is a Wellcome Trust Clinical Research Fellow. A.S. is supported by the Sanger-EBI Single Cell Centre. This work was funded as part of Wellcome Trust Strategic Award 105031/D/14/Z ‘Tracing early mammalian lineage decisions by single-cell genomics’ awarded to W. Reik, S. Teichmann, J. Nichols, B. Simons, T. Voet, S. Srinivas, L. Vallier, B. Göttgens and J. Marioni.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1863

    Co-regulation map of the human proteome enables identification of protein functions

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability: All mass spectrometry raw files generated in-house have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository36 with the dataset identifier PXD008888. The co-regulation map is hosted on our website at www.proteomeHD.net, and pair-wise co-regulation scores are available through STRING (https://string-db.org). A network of the top 0.5% co-regulated protein pairs can be explored interactively on NDEx (https://doi.org/10.18119/N9N30Q).Code availability: Data analysis was performed in R 3.5.1. R scripts and input files required to reproduce the results of this manuscript are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/ProteomeHD. R scripts related specifically to the benchmarking of the treeClust algorithm using synthetic data are available in the following GitHub repository: https://github.com/Rappsilber-Laboratory/treeClust-benchmarking. The R package data.table was used for fast data processing. Figures were prepared using ggplot2, gridExtra, cowplot and viridis.Note that the title of the AAM is different from the published versionThe annotation of protein function is a longstanding challenge of cell biology that suffers from the sheer magnitude of the task. Here we present ProteomeHD, which documents the response of 10,323 human proteins to 294 biological perturbations, measured by isotope-labelling mass spectrometry. We reveal functional associations between human proteins using the treeClust machine learning algorithm, which we show to improve protein co-regulation analysis due to robust selectivity for close linear relationships. Our co-regulation map identifies a functional context for many uncharacterized proteins, including microproteins that are difficult to study with traditional methods. Co-regulation also captures relationships between proteins which do not physically interact or co-localize. For example, co-regulation of the peroxisomal membrane protein PEX11β with mitochondrial respiration factors led us to discover a novel organelle interface between peroxisomes and mitochondria in mammalian cells. The co-regulation map can be explored at www.proteomeHD.net .Biotechnology & Biological Sciences Research Council (BBSRC)European Commissio

    Wild bonobos host geographically restricted malaria parasites including a putative new <i>Laverania</i> species

    Get PDF
    Malaria parasites, though widespread among wild chimpanzees and gorillas, have not been detected in bonobos. Here, we show that wild-living bonobos are endemically Plasmodium infected in the eastern-most part of their range. Testing 1556 faecal samples from 11 field sites, we identify high prevalence Laverania infections in the Tshuapa-Lomami-Lualaba (TL2) area, but not at other locations across the Congo. TL2 bonobos harbour P. gaboni, formerly only found in chimpanzees, as well as a potential new species, Plasmodium lomamiensis sp. nov. Rare co-infections with non-Laverania parasites were also observed. Phylogenetic relationships among Laverania species are consistent with co-divergence with their gorilla, chimpanzee and bonobo hosts, suggesting a timescale for their evolution. The absence of Plasmodium from most field sites could not be explained by parasite seasonality, nor by bonobo population structure, diet or gut microbiota. Thus, the geographic restriction of bonobo Plasmodium reflects still unidentified factors that likely influence parasite transmission
    • …
    corecore