24 research outputs found

    Skin autofluorescence is increased in patients with carotid artery stenosis and peripheral artery disease

    Get PDF
    Advanced glycation end products (AGEs) have a pivotal role in atherosclerosis. We evaluated skin autofluorescence (SAF), a non-invasive measurement of tissue AGE accumulation, in patients with carotid artery stenosis with and without coexisting peripheral artery occlusive disease (PAOD). SAF was measured using the AGE Reader™ in 56 patients with carotid artery stenosis and in 56 age- and sex-matched healthy controls without diabetes, renal dysfunction or known atherosclerotic disease. SAF was higher in patients with carotid artery stenosis compared to the control group: mean 2.81 versus 2.46 (P = 0.002), but especially in the younger age group of 50–60 years old: mean 2.82 versus 1.94 (P = 0.000). Patients with carotid artery stenosis and PAOD proved to have an even higher SAF than patients with carotid artery stenosis only: mean 3.28 versus 2.66 (P = 0.003). Backward linear regression analysis showed that age, smoking, diabetes mellitus, renal function and the presence of PAOD were the determinants of SAF, but carotid artery stenosis was not. SAF is increased in patients with carotid artery stenosis and PAOD. The univariate and multivariate associations of SAF with age, smoking, diabetes, renal insufficiency and PAOD suggest that increased SAF can be seen as an indicator of widespread atherosclerosis

    Functional consequences of mitochondrial tRNA Trp and tRNA Arg mutations causing combined OXPHOS defects.

    No full text
    Contains fulltext : 83310.pdf (publisher's version ) (Closed access)Combined oxidative phosphorylation (OXPHOS) system deficiencies are a group of mitochondrial disorders that are associated with a range of clinical phenotypes and genetic defects. They occur in approximately 30% of all OXPHOS disorders and around 4% are combined complex I, III and IV deficiencies. In this study we present two mutations in the mitochondrial tRNA(Trp) (MT-TW) and tRNA(Arg) (MT-TR) genes, m.5556G>A and m.10450A>G, respectively, which were detected in two unrelated patients showing combined OXPHOS complex I, III and IV deficiencies and progressive multisystemic diseases. Both mitochondrial tRNA mutations were almost homoplasmic in fibroblasts and muscle tissue of the two patients and not present in controls. Patient fibroblasts showed a general mitochondrial translation defect. The mutations resulted in lowered steady-state levels and altered conformations of the tRNAs. Cybrid cell lines showed similar tRNA defects and impairment of OXPHOS complex assembly as patient fibroblasts. Our results show that these tRNA(Trp) and tRNA(Arg) mutations cause the combined OXPHOS deficiencies in the patients, adding to the still expanding group of pathogenic mitochondrial tRNA mutations.01 maart 20106 p
    corecore