105 research outputs found

    Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability

    Get PDF
    Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)

    Large Isoforms of UNC-89 (Obscurin) Are Required for Muscle Cell Architecture and Optimal Calcium Release in Caenorhabditis elegans

    Get PDF
    Calcium, a ubiquitous intracellular signaling molecule, controls a diverse array of cellular processes. Consequently, cells have developed strategies to modulate the shape of calcium signals in space and time. The force generating machinery in muscle is regulated by the influx and efflux of calcium ions into the muscle cytoplasm. In order for efficient and effective muscle contraction to occur, calcium needs to be rapidly, accurately and reliably regulated. The mechanisms underlying this highly regulated process are not fully understood. Here, we show that the Caenorhabditis elegans homolog of the giant muscle protein obscurin, UNC-89, is required for normal muscle cell architecture. The large immunoglobulin domain-rich isoforms of UNC-89 are critical for sarcomere and sarcoplasmic reticulum organization. Furthermore, we have found evidence that this structural organization is crucial for excitation-contraction coupling in the body wall muscle, through the coordination of calcium signaling. Thus, our data implicates UNC-89 in maintaining muscle cell architecture and that this precise organization is essential for optimal calcium mobilization and efficient and effective muscle contraction

    Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization

    Get PDF
    Monocytes and macrophages constitute the first line of defense of the immune system against external pathogens. Macrophages have a highly plastic phenotype depending on environmental conditions; the extremes of this phenotypic spectrum are a pro-inflammatory defensive role (M1 phenotype) and an anti-inflammatory tissue-repair one (M2 phenotype). The Inhibitor of Apoptosis (IAP) proteins have important roles in the regulation of several cellular processes, including innate and adaptive immunity. In this study we have analyzed the differential expression of the IAPs, NAIP, cIAP1 and cIAP2, during macrophage differentiation and polarization into M1 or M2. In polarized THP-1 cells and primary human macrophages, NAIP is abundantly expressed in M2 macrophages, while cIAP1 and cIAP2 show an inverse pattern of expression in polarized macrophages, with elevated expression levels of cIAP1 in M2 and cIAP2 preferentially expressed in M1. Interestingly, treatment with the IAP antagonist SMC-LCL161, induced the upregulation of NAIP in M2, the downregulation of cIAP1 in M1 and M2 and an induction of cIAP2 in M1 macrophages.This work was supported by Universidad de Granada, Plan Propio 2015;#P3B: FAM, VMC (http://investigacion.ugr.es/pages/planpropio/2015/ resoluciones/p3b_def_28072015); Universidad de Granada CEI BioTic;#CAEP2-84: VMC (http:// biotic.ugr.es/pages/resolucionprovisional enseaanzapractica22demayo/!); and Canadian nstitutes of Health Research;#231421, #318176, #361847: STB, ECL, RK (http://www.cihr-irsc.gc. ca/e/193.html). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Metal-Substituted Microporous Aluminophosphates

    Get PDF
    This chapter aims to present the zeotypes aluminophosphates (AlPOs) as a complementary alternative to zeolites in the isomorphic incorporation of metal ions within all-inorganic microporous frameworks as well as to discuss didactically the catalytic consequences derived from the distinctive features of both frameworks. It does not intend to be a compilation of either all or the most significant publications involving metal-substituted microporous aluminophosphates. Families of AlPOs and zeolites, which include metal ion-substituted variants, are the dominant microporous materials. Both these systems are widely used as catalysts, in particular through aliovalent metal ions substitution. Here, some general description of the synthesis procedures and characterization techniques of the MeAPOs (metal-contained aluminophosphates) is given along with catalytic properties. Next, some illustrative examples of the catalytic possibilities of MeAPOs as catalysts in the transformation of the organic molecules are given. The oxidation of the hardly activated hydrocarbons has probably been the most successful use of AlPOs doped with the divalent transition metal ions Co2+, Mn2+, and Fe2+, whose incorporation in zeolites is disfavoured. The catalytic role of these MeAPOs is rationalized based on the knowledge acquired from a combination of the most advanced characterization techniques. Finally, the importance of the high specificity of the structure-directing agents employed in the preparation of MeAPOs is discussed taking N,N-methyldicyclohexylamine in the synthesis of AFI-structured materials as a driving force. It is shown how such a high specificity could be predicted and how it can open great possibilities in the control of parameters as critical in catalysis as crystal size, inter-and intracrystalline mesoporosity, acidity, redox properties, incorporation of a great variety of heteroatom ions or final environment of the metal site (surrounding it by either P or Al)
    corecore