35 research outputs found

    Role of protein kinase C and NF-κB in proteolysis-inducing factor-induced proteasome expression in C2C12 myotubes

    Get PDF
    Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex

    Structure and Novel Functional Mechanism of Drosophila SNF in Sex-Lethal Splicing

    Get PDF
    Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B″, and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination

    Spag16, an Axonemal Central Apparatus Gene, Encodes a Male Germ Cell Nuclear Speckle Protein that Regulates SPAG16 mRNA Expression

    Get PDF
    Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the “9+2” axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene that encodes two protein products with different functions

    TRAIL promotes caspase-dependent pro-inflammatory responses via PKCδ activation by vascular smooth muscle cells

    Get PDF
    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is best known for its selective cytotoxicity against transformed tumor cells. Most non-transformed primary cells and several cancer cell lines are not only resistant to death receptor-induced apoptosis, but also subject to inflammatory responses in a nuclear factor-κB (NF-κB)-dependent manner. Although the involvement of TRAIL in a variety of vascular disorders has been proposed, the exact molecular mechanisms are unclear. Here, we aimed to delineate the role of TRAIL in inflammatory vascular response. We also sought possible molecular mechanisms to identify potential targets for the prevention and treatment of post-angioplastic restenosis and atherosclerosis. Treatment with TRAIL increased the expression of intercellular adhesion molecule-1 by primary human vascular smooth muscle cells via protein kinase C (PKC)δ and NF-κB activation. Following detailed analysis using various PKCδ mutants, we determined that PKCδ activation was mediated by caspase-dependent proteolysis. The protective role of PKCδ was further confirmed in post-traumatic vascular remodeling in vivo. We propose that the TRAIL/TRAIL receptor system has a critical role in the pathogenesis of inflammatory vascular disorders by transducing pro-inflammatory signals via caspase-mediated PKCδ cleavage and subsequent NF-κB activation

    Genome-Wide Identification of Alternatively Spliced mRNA Targets of Specific RNA-Binding Proteins

    Get PDF
    BACKGROUND: Alternative splicing plays an important role in generating molecular and functional diversity in multi-cellular organisms. RNA binding proteins play crucial roles in modulating splice site choice. The majority of known binding sites for regulatory proteins are short, degenerate consensus sequences that occur frequently throughout the genome. This poses an important challenge to distinguish between functionally relevant sequences and a vast array of those occurring by chance. METHODOLOGY/PRINCIPAL FINDINGS: Here we have used a computational approach that combines a series of biological constraints to identify uridine-rich sequence motifs that are present within relevant biological contexts and thus are potential targets of the Drosophila master sex-switch protein Sex-lethal (SXL). This strategy led to the identification of one novel target. Moreover, our systematic analysis provides a starting point for the molecular and functional characterization of an additional target, which is dependent on SXL activity, either directly or indirectly, for regulation in a germline-specific manner. CONCLUSIONS/SIGNIFICANCE: This approach has successfully identified previously known, new, and potential SXL targets. Our analysis suggests that only a subset of potential SXL sites are regulated by SXL. Finally, this approach should be directly relevant to the large majority of splicing regulatory proteins for which bonafide targets are unknown

    Crosstalk between PKCζ and the IL4/Stat6 pathway during T-cell-mediated hepatitis

    Get PDF
    PKCζ is required for nuclear factor κ-B (NF-κB) activation in several cell systems. NF-κB is a suppressor of liver apoptosis during development and in concanavalin A (ConA)-induced T-cell-mediated hepatitis. Here we show that PKCζ−/− mice display inhibited ConA-induced NF-κB activation and reduced damage in liver. As the IL-4/Stat6 pathway is necessary for ConA-induced hepatitis, we addressed here the potential role of PKCζ in this cascade. Interestingly, the loss of PKCζ severely attenuated serum IL-5 and liver eotaxin-1 levels, two critical mediators of liver damage. Stat6 tyrosine phosphorylation and Jak1 activation were ablated in the liver of ConA-injected PKCζ−/− mice and in IL-4-stimulated PKCζ−/− fibroblasts. PKCζ interacts with and phosphorylates Jak1 and PKCζ activity is required for Jak1 function. In contrast, Par-4−/− mice have increased sensitivity to ConA-induced liver damage and IL-4 signaling. This unveils a novel and critical involvement of PKCζ in the IL-4/Stat6 signaling pathway in vitro and in vivo

    TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor

    No full text
    TRAF6 is an E3 ubiquitin ligase that mediates signaling from members of the tumor necrosis factor and Toll-like receptor superfamilies, including the p75 neurotrophin receptor. Recently, TRAF6 was shown to bind to another p75 cytoplasmic interactor, NRIF, and promote its nuclear localization. Here, we demonstrate that NRIF is a substrate for TRAF6-mediated K63 polyubiquitination and that this modification is necessary for its nuclear translocation. Activation of p75 resulted in NRIF polyubiquitination, association with TRAF6 and nuclear localization. NRIF was polyubiquitinated by TRAF6 in vitro and in cultured cells, and this was abrogated by mutation of K19 in the amino-terminus of NRIF. The K19R mutant NRIF displayed reduced TRAF6 association and neurotrophin-dependent nuclear localization. In neurons from traf6−/− mice, NRIF failed to enter the nucleus in response to p75 activation, and polyubiquitination and nuclear localization were attenuated in traf6−/− brain. Finally, unlike wild-type NRIF, the K19R NRIF failed to reconstitute p75-mediated apoptosis in nrif−/− neurons. These results reveal a unique mechanism of p75 signaling and a novel role for K63-linked ubiquitin chains
    corecore