53 research outputs found

    Common marmoset (Callithrix jacchus) personality, subjective well-being, hair cortisol level and AVPR1a, OPRM1, and DAT genotypes

    Get PDF
    We studied personality, subjective well-being, and hair cortisol level, in common marmosets Callithrix jacchus, a small, cooperatively breeding New World monkey, by examining their associations with one another and genotypes. Subjects were 68 males and 9 females that lived in the RIKEN Center for Life Science Technologies. Personality and subjective well-being were assessed by keeper ratings on two questionnaires, hair samples were obtained to assay cortisol level and buccal swabs were used to assess AVPR1a, OPRM1 and DAT genotypes. Three personality domains—Dominance, Sociability, and Neuroticism—were identified. Consistent with findings in other species, Sociability and Neuroticism were related to higher and lower subjective well-being, respectively. Sociability was also associated with higher hair cortisol levels. The personality domains and hair cortisol levels were heritable and associated with genotypes: the short form of AVPR1a was associated with lower Neuroticism and the AA genotype of the A111T SNP of OPRM1 was related to lower Dominance, lower Neuroticism, and higher hair cortisol level. Some genetic associations were not in directions that one would expect given findings in other species. These findings provide insights into the proximate and ultimate bases of personality in common marmosets, other primates and humans

    Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective

    Get PDF
    In human and non-human animals the steroid hormones cortisol and testosterone are involved in social aggression and recent studies suggest that these steroids might jointly regulate this behavior. It has been hypothesized that the imbalance between cortisol and testosterone levels is predictive for aggressive psychopathology, with high testosterone to cortisol ratio predisposing to a socially aggressive behavioral style. In this review, we focus on the effects of cortisol and testosterone on human social aggression, as well as on how they might modulate the aggression circuitry of the human brain. Recently, serotonin is hypothesized to differentiate between impulsive and instrumental aggression, and we will briefly review evidence on this hypothesis. The aim of this article is to provide a theoretical framework for the role of steroids and serotonin in impulsive social aggression in humans

    Dose-Dependent Effects of Endotoxin on Neurobehavioral Functions in Humans

    Get PDF
    Clinical and experimental evidence document that inflammation and increased peripheral cytokine levels are associated with depression-like symptoms and neuropsychological disturbances in humans. However, it remains unclear whether and to what extent cognitive functions like memory and attention are affected by and related to the dose of the inflammatory stimulus. Thus, in a cross-over, double-blind, experimental approach, healthy male volunteers were administered with either placebo or bacterial lipopolysaccharide (LPS) at doses of 0.4 (n = 18) or 0.8 ng/kg of body weight (n = 16). Pro- and anti-inflammatory cytokines, norephinephrine and cortisol concentrations were analyzed before and 1, 1.75, 3, 4, 6, and 24 h after injection. In addition, changes in mood and anxiety levels were determined together with working memory (n-back task) and long term memory performance (recall of emotional and neutral pictures of the International Affective Picture System). Endotoxin administration caused a profound transient physiological response with dose-related elevations in body temperature and heart rate, increases in plasma interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α and IL-1 receptor antagonist (IL-1ra), salivary and plasma cortisol, and plasma norepinephrine. These changes were accompanied by dose-related decreased mood and increased anxiety levels. LPS administration did not affect accuracy in working memory performance but improved reaction time in the high-dose LPS condition compared to the control conditon. In contrast, long-term memory performance was impaired selectively for emotional stimuli after administration of the lower but not of the higher dose of LPS. These data suggest the existence of at least two counter-acting mechanisms, one promoting and one inhibiting cognitive performance during acute systemic inflammation

    White matter changes in microstructure associated with a maladaptive response to stress in rats

    Get PDF
    In today's society, every individual is subjected to stressful stimuli with different intensities and duration. This exposure can be a key trigger in several mental illnesses greatly affecting one's quality of life. Yet not all subjects respond equally to the same stimulus and some are able to better adapt to them delaying the onset of its negative consequences. The neural specificities of this adaptation can be essential to understand the true dynamics of stress as well as to design new approaches to reduce its consequences. In the current work, we employed ex vivo high field diffusion magnetic resonance imaging (MRI) to uncover the differences in white matter properties in the entire brain between Fisher 344 (F344) and Sprague-Dawley (SD) rats, known to present different responses to stress, and to examine the effects of a 2-week repeated inescapable stress paradigm. We applied a tract-based spatial statistics (TBSS) analysis approach to a total of 25 animals. After exposure to stress, SD rats were found to have lower values of corticosterone when compared with F344 rats. Overall, stress was found to lead to an overall increase in fractional anisotropy (FA), on top of a reduction in mean and radial diffusivity (MD and RD) in several white matter bundles of the brain. No effect of strain on the white matter diffusion properties was observed. The strain-by-stress interaction revealed an effect on SD rats in MD, RD and axial diffusivity (AD), with lower diffusion metric levels on stressed animals. These effects were localized on the left side of the brain on the external capsule, corpus callosum, deep cerebral white matter, anterior commissure, endopiriform nucleus, dorsal hippocampus and amygdala fibers. The results possibly reveal an adaptation of the SD strain to the stressful stimuli through synaptic and structural plasticity processes, possibly reflecting learning processes.We thank Neurospin (high field MRI center CEA Saclay) for providing its support for MRI acquisition. JB was supported by grants from Fondation pour la Recherche Médicale (FRM) and Groupe Pasteur Mutualité (GPM). This work was supported by a grant from ANR (SIGMA). This work was performed on a platform of France Life Imaging (FLI) network partly funded by the grant ANR-11-INBS-0006. This work and RM were supported by a fellowship of the project FCT-ANR/NEU-OSD/0258/2012 founded by FCT/MEC (www.fct.pt) and by Fundo Europeu de Desenvolvimento Regional (FEDER). AC was supported by a grant from the Fondation NRJ.info:eu-repo/semantics/publishedVersio
    corecore