172 research outputs found

    The Connectome Visualization Utility: Software for Visualization of Human Brain Networks

    Get PDF
    In analysis of the human connectome, the connectivity of the human brain is collected from multiple imaging modalities and analyzed using graph theoretical techniques. The dimensionality of human connectivity data is high, and making sense of the complex networks in connectomics requires sophisticated visualization and analysis software. The current availability of software packages to analyze the human connectome is limited. The Connectome Visualization Utility (CVU) is a new software package designed for the visualization and network analysis of human brain networks. CVU complements existing software packages by offering expanded interactive analysis and advanced visualization features, including the automated visualization of networks in three different complementary styles and features the special visualization of scalar graph theoretical properties and modular structure. By decoupling the process of network creation from network visualization and analysis, we ensure that CVU can visualize networks from any imaging modality. CVU offers a graphical user interface, interactive scripting, and represents data uses transparent neuroimaging and matrix-based file types rather than opaque application-specific file formats

    Structural MRI studies of language function in the undamaged brain

    Get PDF
    In recent years, the demonstration that structural changes can occur in the human brain beyond those associated with development, ageing and neuropathology has revealed a new approach to studying the neural basis of behaviour. In this review paper, we focus on structural imaging studies of language that have utilised behavioural measures in order to investigate the neural correlates of language skills in the undamaged brain. We report studies that have used two different techniques: voxel-based morphometry of whole brain grey or white matter images and diffusion tensor imaging. At present, there are relatively few structural imaging studies of language. We group them into those that investigated (1) the perception of novel speech sounds, (2) the links between speech sounds and their meaning, (3) speech production, and (4) reading. We highlight the validity of the findings by comparing the results to those from functional imaging studies. Finally, we conclude by summarising the novel contribution of these studies to date and potential directions for future research

    Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans

    Get PDF
    The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz), spontaneous fluctuations of the blood oxygen level dependent (BOLD) signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the “default” system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions) that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions) critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in the temporal and spatial brain functional networks of the human brain that underlie spontaneous neuronal dynamics, which provides important implications for our understanding of how intrinsically coherent spontaneous brain activity has evolved into an optimal neuronal architecture to support global computation and information integration in the absence of specific stimuli or behaviors

    A biophysical model of dynamic balancing of excitation and inhibition in fast oscillatory large-scale networks

    Get PDF
    Over long timescales, neuronal dynamics can be robust to quite large perturbations, such as changes in white matter connectivity and grey matter structure through processes including learning, aging, development and certain disease processes. One possible explanation is that robust dynamics are facilitated by homeostatic mechanisms that can dynamically rebalance brain networks. In this study, we simulate a cortical brain network using the Wilson-Cowan neural mass model with conduction delays and noise, and use inhibitory synaptic plasticity (ISP) to dynamically achieve a spatially local balance between excitation and inhibition. Using MEG data from 55 subjects we find that ISP enables us to simultaneously achieve high correlation with multiple measures of functional connectivity, including amplitude envelope correlation and phase locking. Further, we find that ISP successfully achieves local E/I balance, and can consistently predict the functional connectivity computed from real MEG data, for a much wider range of model parameters than is possible with a model without ISP

    Aging brain from a network science perspective: Something to be positive about?

    Get PDF
    To better understand age differences in brain function and behavior, the current study applied network science to model functional interactions between brain regions. We observed a shift in network topology whereby for older adults subcortical and cerebellar structures overlapping with the Salience network had more connectivity to the rest of the brain, coupled with fragmentation of large-scale cortical networks such as the Default and Fronto-Parietal networks. Additionally, greater integration of the dorsal medial thalamus and red nucleus in the Salience network was associated with greater satisfaction with life for older adults, which is consistent with theoretical predictions of age-related increases in emotion regulation that are thought to help maintain well-being and life satisfaction in late adulthood. In regard to cognitive abilities, greater ventral medial prefrontal cortex coherence with its topological neighbors in the Default Network was associated with faster processing speed. Results suggest that large-scale organizing properties of the brain differ with normal aging, and this perspective may offer novel insight into understanding age-related differences in cognitive function and well-being. © 2013 Voss et al

    A Functional Proteomic Method for Biomarker Discovery

    Get PDF
    The sequencing of the human genome holds out the hope for personalized medicine, but it is clear that analysis of DNA or RNA content alone is not sufficient to understand most disease processes. Proteomic strategies that allow unbiased identification of proteins and their post-transcriptional and -translation modifications are an essential complement to genomic strategies. However, the enormity of the proteome and limitations in proteomic methods make it difficult to determine the targets that are particularly relevant to human disease. Methods are therefore needed that allow rational identification of targets based on function and relevance to disease. Screening methodologies such as phage display, SELEX, and small-molecule combinatorial chemistry have been widely used to discover specific ligands for cells or tissues of interest, such as tumors. Those ligands can be used in turn as affinity probes to identify their cognate molecular targets when they are not known in advance. Here we report an easy, robust and generally applicable approach in which phage particles bearing cell- or tissue-specific peptides serve directly as the affinity probes for their molecular targets. For proof of principle, the method successfully identified molecular binding partners, three of them novel, for 15 peptides specific for pancreatic cancer

    It's not what you say but the way that you say it: an fMRI study of differential lexical and non-lexical prosodic pitch processing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aims to identify the neural substrate involved in prosodic pitch processing. Functional magnetic resonance imaging was used to test the premise that prosody pitch processing is primarily subserved by the right cortical hemisphere.</p> <p>Two experimental paradigms were used, firstly pairs of spoken sentences, where the only variation was a single internal phrase pitch change, and secondly, a matched condition utilizing pitch changes within analogous tone-sequence phrases. This removed the potential confounder of lexical evaluation. fMRI images were obtained using these paradigms.</p> <p>Results</p> <p>Activation was significantly greater within the right frontal and temporal cortices during the tone-sequence stimuli relative to the sentence stimuli.</p> <p>Conclusion</p> <p>This study showed that pitch changes, stripped of lexical information, are mainly processed by the right cerebral hemisphere, whilst the processing of analogous, matched, lexical pitch change is preferentially left sided. These findings, showing hemispherical differentiation of processing based on stimulus complexity, are in accord with a 'task dependent' hypothesis of pitch processing.</p

    Specifically Progressive Deficits of Brain Functional Marker in Amnestic Type Mild Cognitive Impairment

    Get PDF
    Background: Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD. Methodology/Principal Findings: Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the impairments of episodic memory from baseline to follow up in aMCI group. Conclusions/Significance: The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the development of aMCI

    Impaired Small-World Network Efficiency and Dynamic Functional Distribution in Patients with Cirrhosis

    Get PDF
    Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome and a major complication of liver cirrhosis. Dysmetabolism of the brain, related to elevated ammonia levels, interferes with intercortical connectivity and cognitive function. For evaluation of network efficiency, a ‘small-world’ network model can quantify the effectiveness of information transfer within brain networks. This study aimed to use small-world topology to investigate abnormalities of neuronal connectivity among widely distributed brain regions in patients with liver cirrhosis using resting-state functional magnetic resonance imaging (rs-fMRI). Seventeen cirrhotic patients without HE, 9 with minimal HE, 9 with overt HE, and 35 healthy controls were compared. The interregional correlation matrix was obtained by averaging the rs-fMRI time series over all voxels in each of the 90 regions using the automated anatomical labeling model. Cost and correlation threshold values were then applied to construct the functional brain network. The absolute and relative network efficiencies were calculated; quantifying distinct aspects of the local and global topological network organization. Correlations between network topology parameters, ammonia levels, and the severity of HE were determined using linear regression and ANOVA. The local and global topological efficiencies of the functional connectivity network were significantly disrupted in HE patients; showing abnormal small-world properties. Alterations in regional characteristics, including nodal efficiency and nodal strength, occurred predominantly in the association, primary, and limbic/paralimbic regions. The degree of network organization disruption depended on the severity of HE. Ammonia levels were also significantly associated with the alterations in local network properties. Results indicated that alterations in the rs-fMRI network topology of the brain were associated with HE grade; and that focal or diffuse lesions disturbed the functional network to further alter the global topology and efficiency of the whole brain network. These findings provide insights into the functional changes in the human brain in HE

    Driving and Driven Architectures of Directed Small-World Human Brain Functional Networks

    Get PDF
    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome
    corecore