21 research outputs found

    Identification and Characterization of an Unusual Class I Myosin Involved in Vesicle Traffic in Trypanosoma brucei

    Get PDF
    Myosins are a multimember family of motor proteins with diverse functions in eukaryotic cells. African trypanosomes possess only two candidate myosins and thus represent a useful system for functional analysis of these motors. One of these candidates is an unusual class I myosin (TbMyo1) that is expressed at similar levels but organized differently during the life cycle of Trypanosoma brucei. This myosin localizes to the polarized endocytic pathway in bloodstream forms of the parasite. This organization is actin dependent. Knock down of TbMyo1 results in a significant reduction in endocytic activity, a cessation in cell division and eventually cell death. A striking morphological feature in these cells is an enlargement of the flagellar pocket, which is consistent with an imbalance in traffic to and from the surface. In contrast TbMyo1 is distributed throughout procyclic forms of the tsetse vector and a loss of ∼90% of the protein has no obvious effects on growth or morphology. These results reveal a life cycle stage specific requirement for this myosin in essential endocytic traffic and represent the first description of the involvement of a motor protein in vesicle traffic in these parasites

    Ebolavirus Is Internalized into Host Cells via Macropinocytosis in a Viral Glycoprotein-Dependent Manner

    Get PDF
    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Sexual function after anterior vaginal wall prolapse surgery

    No full text

    Single-dose aprepitant vs ondansetron for the prevention of postoperative nausea and vomiting: A randomized, double-blind Phase III trial in patients undergoing open abdominal surgery

    No full text
    Background: The neurokinin1 antagonist aprepitant is effective for prevention of chemotherapy-induced nausea and vomiting. We compared aprepitant with ondansetron for prevention of postoperative nausea and vomiting. Methods: Nine hundred and twenty-two patients receiving general anaesthesia for major abdominal surgery were assigned to receive a single preoperative dose of oral aprepitant 40 mg, oral aprepitant 125 mg, or i.v. ondansetron 4 mg in a randomized, double-blind trial. Vomiting episodes, use of rescue therapy, and nausea severity (verbal rating scale) were documented for 48 h after surgery. Primary efficacy endpoints were complete response (no vomiting and no use of rescue therapy) 0-24 h after surgery and no vomiting 0-24 h after surgery. The secondary endpoint was no vomiting 0-48 h after surgery. Results: Aprepitant at both doses was non-inferior to ondansetron for complete response 0-24 h after surgery (64% for aprepitant 40 mg, 63% for aprepitant 125 mg, and 55% for ondansetron, lower bound of 1-sided 95% CI > 0.65), superior to ondansetron for no vomiting 0-24 h after surgery (84% for aprepitant 40 mg, 86% for aprepitant 125 mg, and 71% for ondansetron; P < 0.001), and superior for no vomiting 0-48 h after surgery (82% for aprepitant, 40 mg, 85% for aprepitant, 125 mg, and 66% for ondansetron; P < 0.001). The distribution of peak nausea scores was lower in both aprepitant groups vs ondansetron (P < 0.05). Conclusions: Aprepitant was non-inferior to ondansetron in achieving complete response for 24 h after surgery. Aprepitant was significantly more effective than ondansetron for preventing vomiting at 24 and 48 h after surgery, and in reducing nausea severity in the first 48 h after surgery. Aprepitant was generally well tolerated. © The Board of Management and Trustees of the British Journal of Anaesthesia 2007. All rights reserved.link_to_OA_fulltex
    corecore