49 research outputs found

    The Origins of I-type Spherules and the Atmospheric Entry of Iron Micrometeoroids.

    Get PDF
    The Earth's extraterrestrial dust flux includes a wide variety of dust particles that include FeNi metallic grains. During their atmospheric entry iron micrometeoroids melt and oxidize to form cosmic spherules termed I-type spherules. These particles are chemically resistant and readily collected by magnetic separation and are thus the most likely micrometeorites to be recovered from modern and ancient sediments. Understanding their behavior during atmospheric entry is crucial in constraining their abundance relative to other particle types and the nature of the zodiacal dust population at 1 AU. This paper presents numerical simulations of the atmospheric entry heating of iron meteoroids in order to investigate the abundance and nature of these materials. The results indicate that iron micrometeoroids experience peak temperatures 300-800K higher than silicate particles explaining the rarity of unmelted iron particles which can only be present at sizes of <50 m. The lower evaporation rates of liquid iron oxide leads to greater survival of iron particles compared with silicates, which enhances their abundance amongst micrometeorites by a factor of 2. The abundance of I-types is shown to be broadly consistent with the abundance and size of metal in ordinary chondrites and the current day flux of ordinary chondrite-derived MMs arriving at Earth. Furthermore, carbonaceous asteroids and cometary dust are suggested to make negligible contributions to the I-type spherule flux. Events involving such objects, therefore, cannot be recognized from I-type spherule abundances in the geological record

    The entry heating and abundances of basaltic micrometeorites

    Get PDF
    Basaltic micrometeorites (MMs) derived from HED-like parent bodies have been found amongst particles collected from the Antarctic and from Arctic glaciers and are to date the only achondritic particles reported amongst cosmic dust. The majority of Antarctic basaltic particles are completely melted cosmic spherules with only one unmelted particle recognised from the region. This paper investigates the entry heating of basaltic MMs in order to predict the relative abundances of unmelted to melted basaltic particles and to evaluate how mineralogical differences in precursor materials influence the final products of atmospheric entry collected on the Earth's surface. Thermodynamic modelling is used to simulate the melting behaviour of particles with compositions corresponding to eucrites, diogenites and ordinary chondrites in order to evaluate degree of partial melting and to make a comparison between the behaviour of chondritic particles that dominate the terrestrial dust flux and basaltic micrometeroids. The results of 120,000 simulations were compiled to predict relative abundances and indicate that the phase relations of precursor materials are crucial in determining the relative abundances of particle types. Diogenite and ordinary chondrite materials exhibit similar behaviour, although diogenite precursors are more likely to form cosmic spherules under similar entry parameters. Eucrite particles, however, are much more likely to melt due to their lower liquidus temperatures and small temperature interval of partial melting. Eucrite MMs, therefore, usually form completely molten cosmic spherules except at particle diameters <100 m. The low abundance of unmelted basaltic MMs compared with spherules, if statistically valid, is also shown to be inconsistent with a low velocity population (12 km s-1) and is more compatible with higher velocities which may suggest a Near Earth Asteroid sources dominates the current dust production of basaltic MMs

    The weathering of micrometeorites from the Transantarctic Mountains

    Get PDF
    Micrometeorites are cosmic dust particles recovered from the Earth's surface that dominate the influx of extraterrestrial material accreting to our planet. This paper provides the first in-depth study of the weathering of micrometeorites within the Antarctic environment that will allow primary and secondary features to be distinguished. It is based on the analysis of 366 particles from Larkman Nunatak and 25 from the Transantarctic Mountain collection. Several important morphological categories of weathering effects were identified: (1) irregular and faceted cavities, (2) surface etch pits, (3) infilled cavities, (4) replaced silicate phases, and (5) hydrated and replaced metal. These features indicate that congruent dissolution of silicate phases, in particular olivine, is important in generating new pore space within particles. Comparison of the preservation of glass and olivine also indicates preferential dissolution of olivine by acidic solutions during low temperature aqueous alteration. Precipitation of new hydrous phases within cavities, in particular ferrihydrite and jarosite, results in pseudomorph textures within heavily altered particles. Glass, in contrast, is altered to palagonite gels and shows a sequential replacement indicative of varying water to rock ratios. Metal is variably replaced by Fe-oxyhydroxides and results in decreases in Ni/Fe ratio. In contrast, sulphides within metal are largely preserved. Magnetite, an essential component of micrometeorites formed during atmospheric entry, is least altered by interaction with the terrestrial environment. The extent of weathering in the studied micrometeorites is sensitive to differences in their primary mineralogy and varies significantly with particle type. Despite these differences, we propose a weathering scale for micrometeorites based on both their degree of terrestrial alteration and the level of encrustation by secondary phases. The compositions and textures of weathering products, however, suggest open system behaviour and variable water to rock ratios that imply climatic variation over the lifetime of the micrometeorite deposits

    High survivability of micrometeorites on Mars: Sites with enhanced availability of limiting nutrients

    Get PDF
    NASA's strategy in exploring Mars has been to follow the water, because water is essential for life, and it has been found that there are many locations where there was once liquid water on the surface. Now perhaps, to narrow down the search for life on a barren basalt‐dominated surface, there needs to be a refocusing to a strategy of “follow the nutrients.” Here we model the entry of metallic micrometeoroids through the Martian atmosphere, and investigate variations in micrometeorite abundance at an analogue site on the Nullarbor Plain in Australia, to determine where the common limiting nutrients available in these (e.g., P, S, Fe) become concentrated on the surface of Mars. We find that dense micrometeorites are abundant in a range of desert environments, becoming concentrated by aeolian processes into specific sites that would be easily investigated by a robotic rover. Our modeling suggests that micrometeorites are currently far more abundant on the surface of Mars than on Earth, and given the far greater abundance of water and warmer conditions on Earth and thus much more active weather system, this was likely true throughout the history of Mars. Because micrometeorites contain a variety of redox sensitive minerals including FeNi alloys, sulfide and phosphide minerals, and organic compounds, the sites where these become concentrated are far more nutrient rich, and thus more compatible with chemolithotrophic life than most of the Martian surface. Plain Language Summary NASA's exploration program has allowed the scientific community to demonstrate clearly that Mars had a watery past, so the search for life needs to move on to identifying the places where water and nutrients coincided. We have investigated the relative abundance of micrometeorites on Mars compared to the Earth because these contain key nutrients that the earliest life forms on Earth used, and because their contained minerals can be used to investigate past atmospheric chemistry. We suggest that micrometeorites should be far more abundant on the Martian surface than on Earth's, and that wind‐driven modification of sediments is expected to concentrate micrometeorites, and their contained nutrients, in gravel beds and cracks in exposed bedrock

    Low-dimensional network formation in molten sodium carbonate

    Get PDF
    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions

    The Winchcombe meteorite, a unique and pristine witness from the outer solar system.

    Get PDF
    Direct links between carbonaceous chondrites and their parent bodies in the solar system are rare. The Winchcombe meteorite is the most accurately recorded carbonaceous chondrite fall. Its pre-atmospheric orbit and cosmic-ray exposure age confirm that it arrived on Earth shortly after ejection from a primitive asteroid. Recovered only hours after falling, the composition of the Winchcombe meteorite is largely unmodified by the terrestrial environment. It contains abundant hydrated silicates formed during fluid-rock reactions, and carbon- and nitrogen-bearing organic matter including soluble protein amino acids. The near-pristine hydrogen isotopic composition of the Winchcombe meteorite is comparable to the terrestrial hydrosphere, providing further evidence that volatile-rich carbonaceous asteroids played an important role in the origin of Earth's water

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal

    Electrostatic levitation of volcanic ash into the ionosphere and its abrupt effect on climate

    No full text
    Large volcanic eruptions cause short-term climate change owing to the convective rise of fine ash and aerosols into the stratosphere. Volcanic plumes are, however, also associated with large net electrical charges that can also influence the dynamics of their ash particles. Here I show that electrostatic levitation of ash from plumes with a net charge is capable of injecting volcanic particles <500 nm in diameter into the ionosphere in large eruptions lasting more than a few hours. Measured disturbances in the ionosphere during eruptions, and the first discovery of polar mesospheric clouds after the A.D. 1883 Krakatau (Indonesia) eruption, are both consistent with levitation of ash into the mesosphere. Supervolcano eruptions are likely to inject significant quantities of charged ash into the ionosphere, resulting in disturbance or collapse of the global electrical circuit on time scales of 102 s. Because atmospheric electrical potential moderates cloud formation, large eruptions may have abrupt effects on climate through radiative forcing. Average air temperature and precipitation records from the 1883 eruption of Krakatau are consistent with a sudden effect on climate

    Vesicle dynamics during the atmospheric entry heating of cosmic spherules

    No full text
    Cosmic spherules are unique igneous objects that form by melting due to gas drag heating during atmospheric entry heating. Vesicles are an important component of many cosmic spherules since they suggest their precursors had finite volatile contents. Vesicle abundances in spherules decrease through the series porphyritic, glassy, barred, to cryptocrystalline spherules. Anomalous hollow spherules, with large off-centre vesicles occur in both porphyritic and glassy spheres. Numerical simulation of the dynamic behaviour of vesicles during atmospheric flight is presented that indicates vesicles rapidly migrate due to deceleration and separate from non-porphyritic particles. Modest rotation rates of tens of radians s-1 are, however, sufficient to impede loss of vesicles and may explain the presence of small solitary vesicles in barred, cryptocrystalline and glassy spherules. Rapid rotation at spin rates of several thousand radians s-1 are required to concentrate vesicles at the rotational axis and leads to rapid growth by coalescence and either separation or retention depending on the orientation of the rotational axis. Complex rapid rotations that concentrate vesicles in the core of particles are proposed as a mechanism for the formation of hollow spherules. High vesicle contents in porphyritic spherules suggest volatile-rich precursors, however, calculation of volatile retention indicates these have lost >99.9% of volatiles to degassing prior to melting. The formation of hollow spherules, by rapid spin, necessarily implies pre-atmospheric rotations of several thousand radians s-1. These particles are suggested to represent immature dust, recently released from parent bodies, in which rotations have not been slowed by magnetic damping
    corecore