2,692 research outputs found

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised

    Echocardiography of isolated subacute left heart tamponade in a patient with cor pulmonale and circumferential pericardial effusion

    Get PDF
    Patients with advanced idiopathic pulmonary artery hypertension have often a chronic pericardial effusion. It is the result of increased transudation and impaired re-absorption due to elevated venous pressure. These patients have pre-existent symptoms and signs of chronic right heart failure. High degree of suspicion is required to detect of development of an atypical form of tamponade with isolated compression of left heart chambers as shown in present case report. Transthoracic echocardiography provides a rapid access to the correct diagnosis, a prompt relief of symptoms following the ultrasound guided pericardiocentesis and important diagnostic tool for regular follow up of patients thereafter as shown in our case report

    Foot Bone in Vivo: Its Center of Mass and Centroid of Shape

    Get PDF
    This paper studies foot bone geometrical shape and its mass distribution and establishes an assessment method of bone strength. Using spiral CT scanning, with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot bones in vivo and investigate the relationship between the bone's external shape and internal structure. This analysis is explored on the bases of the bone's center of mass and its centroid of shape. We observe the phenomenon of superposition of center of mass and centroid of shape fairly precisely, indicating a possible appearance of biomechanical organism. We investigate two aspects of the geometrical shape, (i) distance between compact bone's centroid of shape and that of the bone and (ii) the mean radius of the same density bone issue relative to the bone's centroid of shape. These quantities are used to interpret the influence of different physical exercises imposed on bone strength, thereby contributing to an alternate assessment technique to bone strength.Comment: 9 pages, 4 figure

    In vivo testing of novel vaccine prototypes against Actinobacillus pleuropneumoniae

    Get PDF
    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections

    Anomalous Diffusion Induced by Cristae Geometry in the Inner Mitochondrial Membrane

    Get PDF
    Diffusion of inner membrane proteins is a prerequisite for correct functionality of mitochondria. The complicated structure of tubular, vesicular or flat cristae and their small connections to the inner boundary membrane impose constraints on the mobility of proteins making their diffusion a very complicated process. Therefore we investigate the molecular transport along the main mitochondrial axis using highly accurate computational methods. Diffusion is modeled on a curvilinear surface reproducing the shape of mitochondrial inner membrane (IM). Monte Carlo simulations are carried out for topologies resembling both tubular and lamellar cristae, for a range of physiologically viable crista sizes and densities. Geometrical confinement induces up to several-fold reduction in apparent mobility. IM surface curvature per se generates transient anomalous diffusion (TAD), while finite and stable values of projected diffusion coefficients are recovered in a quasi-normal regime for short- and long-time limits. In both these cases, a simple area-scaling law is found sufficient to explain limiting diffusion coefficients for permeable cristae junctions, while asymmetric reduction of the junction permeability leads to strong but predictable variations in molecular motion rate. A geometry-based model is given as an illustration for the time-dependence of diffusivity when IM has tubular topology. Implications for experimental observations of diffusion along mitochondria using methods of optical microscopy are drawn out: a non-homogenous power law is proposed as a suitable approach to TAD. The data demonstrate that if not taken into account appropriately, geometrical effects lead to significant misinterpretation of molecular mobility measurements in cellular curvilinear membranes

    Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease

    Get PDF
    Intranasal delivery provides a practical, non-invasive method of bypassing the blood-brain barrier (BBB) to deliver therapeutic agents to the brain and spinal cord. This technology allows drugs that do not cross the BBB to be delivered to the central nervous system within minutes. It also directly delivers drugs that do cross the BBB to the brain, eliminating the need for systemic administration and its potential side effects. This is possible because of the unique connections that the olfactory and trigeminal nerves provide between the brain and external environment. Intranasal delivery does not necessarily require any modification to therapeutic agents. A wide variety of therapeutics, including both small molecules and macromolecules, can be targeted to the olfactory system and connected memory areas affected by Alzheimer's disease. Using the intranasal delivery system, researchers have reversed neurodegeneration and rescued memory in a transgenic mouse model of Alzheimer's disease. Intranasal insulin-like growth factor-I, deferoxamine, and erythropoietin have been shown to protect the brain against stroke in animal models. Intranasal delivery has been used to target the neuroprotective peptide NAP to the brain to treat neurodegeneration. Intranasal fibroblast growth factor-2 and epidermal growth factor have been shown to stimulate neurogenesis in adult animals. Intranasal insulin improves memory, attention, and functioning in patients with Alzheimer's disease or mild cognitive impairment, and even improves memory and mood in normal adult humans. This new method of delivery can revolutionize the treatment of Alzheimer's disease, stroke, and other brain disorders

    CAR-T cell. the long and winding road to solid tumors

    Get PDF
    Adoptive cell therapy of solid tumors with reprogrammed T cells can be considered the "next generation" of cancer hallmarks. CAR-T cells fail to be as effective as in liquid tumors for the inability to reach and survive in the microenvironment surrounding the neoplastic foci. The intricate net of cross-interactions occurring between tumor components, stromal and immune cells leads to an ineffective anergic status favoring the evasion from the host's defenses. Our goal is hereby to trace the road imposed by solid tumors to CAR-T cells, highlighting pitfalls and strategies to be developed and refined to possibly overcome these hurdles

    Roaring high and low: composition and possible functions of the Iberian stag's vocal repertoire

    Get PDF
    We provide a detailed description of the rutting vocalisations of free-ranging male Iberian deer (Cervus elaphus hispanicus, Hilzheimer 1909), a geographically isolated and morphologically differentiated subspecies of red deer Cervus elaphus. We combine spectrographic examinations, spectral analyses and automated classifications to identify different call types, and compare the composition of the vocal repertoire with that of other red deer subspecies. Iberian stags give bouts of roars (and more rarely, short series of barks) that are typically composed of two different types of calls. Long Common Roars are mostly given at the beginning or at the end of the bout, and are characterised by a high fundamental frequency (F0) resulting in poorly defined formant frequencies but a relatively high amplitude. In contrast, Short Common Roars are typically given in the middle or at the end of the bout, and are characterised by a lower F0 resulting in relatively well defined vocal tract resonances, but low amplitude. While we did not identify entirely Harsh Roars (as described in the Scottish red deer subspecies (Cervus elaphus scoticus), a small percentage of Long Common Roars contained segments of deterministic chaos. We suggest that the evolution of two clearly distinct types of Common Roars may reflect divergent selection pressures favouring either vocal efficiency in high pitched roars or the communication of body size in low-pitched, high spectral density roars highlighting vocal tract resonances. The clear divergence of the Iberian red deer vocal repertoire from those of other documented European red deer populations reinforces the status of this geographical variant as a distinct subspecies

    Baryonic symmetries and M5 branes in the AdS_4/CFT_3 correspondence

    Full text link
    We study U(1) symmetries dual to Betti multiplets in the AdS_4/CFT_3 correspondence for M2 branes at Calabi-Yau four-fold singularities. Analysis of the boundary conditions for vector fields in AdS_4 allows for a choice where wrapped M5 brane states carrying non-zero charge under such symmetries can be considered. We begin by focusing on isolated toric singularities without vanishing six-cycles, and study in detail the cone over Q^{111}. The boundary conditions considered are dual to a CFT where the gauge group is U(1)^2 x SU(N)^4. We find agreement between the spectrum of gauge-invariant baryonic-type operators in this theory and wrapped M5 brane states. Moreover, the physics of vacua in which these symmetries are spontaneously broken precisely matches a dual gravity analysis involving resolutions of the singularity, where we are able to match condensates of the baryonic operators, Goldstone bosons and global strings. We also argue more generally that theories where the resolutions have six-cycles are expected to receive non-perturbative corrections from M5 brane instantons. We give a general formula relating the instanton action to normalizable harmonic two-forms, and compute it explicitly for the Q^{222} example. The holographic interpretation of such instantons is currently unclear.Comment: 92 pages, 10 figure
    corecore