41 research outputs found

    Effects of nano particles on antigen-related airway inflammation in mice

    Get PDF
    BACKGROUND: Particulate matter (PM) can exacerbate allergic airway diseases. Although health effects of PM with a diameter of less than 100 nm have been focused, few studies have elucidated the correlation between the sizes of particles and aggravation of allergic diseases. We investigated the effects of nano particles with a diameter of 14 nm or 56 nm on antigen-related airway inflammation. METHODS: ICR mice were divided into six experimental groups. Vehicle, two sizes of carbon nano particles, ovalbumin (OVA), and OVA + nano particles were administered intratracheally. Cellular profile of bronchoalveolar lavage (BAL) fluid, lung histology, expression of cytokines, chemokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG), and immunoglobulin production were studied. RESULTS: Nano particles with a diameter of 14 nm or 56 nm aggravated antigen-related airway inflammation characterized by infiltration of eosinophils, neutrophils, and mononuclear cells, and by an increase in the number of goblet cells in the bronchial epithelium. Nano particles with antigen increased protein levels of interleukin (IL)-5, IL-6, and IL-13, eotaxin, macrophage chemoattractant protein (MCP)-1, and regulated on activation and normal T cells expressed and secreted (RANTES) in the lung as compared with antigen alone. The formation of 8-OHdG, a proper marker of oxidative stress, was moderately induced by nano particles or antigen alone, and was markedly enhanced by antigen plus nano particles as compared with nano particles or antigen alone. The aggravation was more prominent with 14 nm of nano particles than with 56 nm of particles in overall trend. Particles with a diameter of 14 nm exhibited adjuvant activity for total IgE and antigen-specific IgG(1 )and IgE. CONCLUSION: Nano particles can aggravate antigen-related airway inflammation and immunoglobulin production, which is more prominent with smaller particles. The enhancement may be mediated, at least partly, by the increased local expression of IL-5 and eotaxin, and also by the modulated expression of IL-13, RANTES, MCP-1, and IL-6

    Estrogen-induced effects on the neuro-mechanics of hopping in humans

    No full text
    Estrogen receptors in skeletal muscle suggest a tissue-based mechanism for influencing neuromuscular control. This has important physiological implications for both eumenorrheic women with fluctuating estrogen levels and those with constant and attenuated estrogen levels, i.e., women using the monophasic oral contraceptive pill (MOCP). This study examined the effects of endogenous plasma estrogen levels on leg stiffness (K(LEG)) and foot center of pressure (COP) during hopping. Nineteen females (Age = 28.0 +/- 4.2 years, Ht = 1.67 +/- 0.07 m, Mass = 61.6 +/- 6.8 kg) who had been using the MOCP for at least 12 months together with 19 matched, female, non-MOCP users (Age = 31.9 +/- 7.3 years, Ht = 1.63 +/- 0.05 m, Mass = 62.5 +/- 5.9 kg) participated. Non-MOCP users were tested at the time of lowest (menstruation) and highest (approximate to ovulation) estrogen whilst MOCP users were tested at Day 1 and Day 14 of their cycle. At each test session, K(LEG) (N m(-1) kg(-1)) and foot COP path length (mm) and path velocity (mm s(-1)) were determined from ground reaction force data as participants hopped at 2.2 Hz on a force plate. Statistical analysis revealed no significant (p < 0.05) differences for K(LEG). In contrast, significantly higher COP path length (30%) and COP path velocity (25%) were identified at approximate to ovulation compared to menstruation in the non-MOCP users. Whilst there was no evidence of an estrogen-induced effect on K(LEG); significantly elevated estrogen at approximate to ovulation presumably increased extensibility of connective tissue and/or diminished neuromuscular control. Consistent lower limb dynamics of MOCP users demands less reliance on acutely modified neuromuscular control strategies during dynamic tasks and may explain the lower rate of lower limb musculoskeletal injuries in this population compared to non-MOCP users

    Effects of PM10 in human peripheral blood monocytes and J774 macrophages.

    Get PDF
    The effects of PM10, one of the components of particulate air pollution, was investigated using human monocytes and a mouse macrophage cell line (J774). The study aimed to investigate the role of these nanoparticles on the release of the pro-inflammatory cytokine TNF-? and IL-1? gene expression. We also investigated the role of intracellular calcium signalling events and oxidative stress in control of these cytokines and the effect of the particles on the functioning of the cell cytoskeleton. We showed that there was an increase in intracellular calcium concentration in J774 cells on treatment with PM10 particles which could be significantly reduced with concomitant treatment with the calcium antagonists verapamil, the intracellular calcium chelator BAPTA-AM but not with the antioxidant nacystelyn or the calmodulin inhibitor W-7. In human monocytes, PM10 stimulated an increase in intracellular calcium which was reduced by verapamil, BAPTA-AM and nacystelyn. TNF-? release was increased with particle treatment in human monocytes and reduced by only verapamil and BAPTA-AM. IL-1? gene expression was increased with particle treatment and reduced by all of the inhibitors. There was increased F-actin staining in J774 cells after treatment with PM10 particles, which was significantly reduced to control levels with all the antagonists tested. The present study has shown that PM10 particles may exert their pro-inflammatory effects by modulating intracellular calcium signalling in macrophages leading to expression of pro-inflammatory cytokines. Impaired motility and phagocytic ability as shown by changes in the F-actin cytoskeleton is likely to play a key role in particle clearance from the lung
    corecore