75 research outputs found

    Oral and anal sex practices among high school youth in Addis Ababa, Ethiopia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the full range of sexual behaviors of young people is crucial in developing appropriate interventions to prevent and control sexually transmitted infections including HIV. However, such information is meager in developing countries. The objective of this study was to describe oral and anal sex practices and identify associated factors among high school youth.</p> <p>Methods</p> <p>A cross-sectional study was conducted among high school youth in Addis Ababa, Ethiopia. A multi-stage sampling procedure was followed to select a representative sample of school youth. The total sample size for this study was 3840. Data were collected using a self-administered questionnaire. Data analysis was guided by the ecological framework.</p> <p>Results</p> <p>The overall proportion of people who reported ever having oral sex was 5.4% (190) and that of anal sex was 4.3% (154). Of these 51.6% (98) had oral sex and 57.1% (87) had anal sex in the past 12 months. Multiple partnerships were reported by 61.2% of the respondents who had oral sex and 51.1% of students practicing anal sex. Consistent condom use was reported by 12.2% of those practicing oral sex and 26.1% of anal sex. Reasons for oral and anal sex included prevention of pregnancy, preserving virginity, and reduction of HIV and STIs transmission. Oral sex practice was strongly and significantly associated with perception of best friends engagement in oral sex (AOR = 5.7; 95% CI 3.6-11.2) and having illiterate mothers (AOR = 11.5; 95%CI 6.4-18.5). Similarly, anal sex practice was strongly and significantly associated with favorable attitude towards anal sex (AOR = 6.2; 95%CI 3.8-12.4), and perceived best friends engagement in anal sex (AOR = 9.7; 95%CI 5.4-17.7).</p> <p>Conclusion</p> <p>Considerable proportion of adolescents had engaged in oral and anal sex practices. Multiple sexual partnerships were common while consistent condom use was low. Sexual health education and behavior change communication strategies need to cover a full range of sexual practices.</p

    Functional Characterization of Human Cancer-Derived TRKB Mutations

    Get PDF
    Cancer originates from cells that have acquired mutations in genes critical for controlling cell proliferation, survival and differentiation. Often, tumors continue to depend on these so-called driver mutations, providing the rationale for targeted anticancer therapies. To date, large-scale sequencing analyses have revealed hundreds of mutations in human tumors. However, without their functional validation it remains unclear which mutations correspond to driver, or rather bystander, mutations and, therefore, whether the mutated gene represents a target for therapeutic intervention. In human colorectal tumors, the neurotrophic receptor TRKB has been found mutated on two different sites in its kinase domain (TRKBT695I and TRKBD751N). Another site, in the extracellular part of TRKB, is mutated in a human lung adenocarcinoma cell line (TRKBL138F). Lastly, our own analysis has identified one additional TRKB point mutation proximal to the kinase domain (TRKBP507L) in a human melanoma cell line. The functional consequences of all these point mutations, however, have so far remained elusive. Previously, we have shown that TRKB is a potent suppressor of anoikis and that TRKB-expressing cells form highly invasive and metastatic tumors in nude mice. To assess the functional consequences of these four TRKB mutations, we determined their potential to suppress anoikis and to form tumors in nude mice. Unexpectedly, both colon cancer-derived mutants, TRKBT695I and TRKBD751N, displayed reduced activity compared to that of wild-type TRKB. Consistently, upon stimulation with the TRKB ligand BDNF, these mutants were impaired in activating TRKB and its downstream effectors AKT and ERK. The two mutants derived from human tumor cell lines (TRKBL138F and TRKBP507L) were functionally indistinguishable from wild-type TRKB in both in-vitro and in-vivo assays. In conclusion, we fail to detect any gain-of-function of four cancer-derived TRKB point mutations

    Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET) approach to investigate the melanoma transcriptome and characterize the global pathway aberrations.</p> <p>Methods</p> <p>GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo). Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes.</p> <p>Results</p> <p>Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg<sup>++</sup>, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain region(s) of the pathway. Expression levels of c-<it>Myc </it>and <it>Trp53 </it>were also higher in melanoma. Moreover, transcriptional variants resulted from alternative transcription start sites or alternative polyadenylation sites were found in <it>Ras </it>and genes encoding adhesion or cytoskeleton proteins such as integrin, β-catenin, α-catenin, and actin.</p> <p>Conclusion</p> <p>The highly correlated results unmistakably point to a systematic downregulation of mitochondrial activities, which we hypothesize aims to downgrade the mitochondria-mediated apoptosis and the dependency of cancer cells on angiogenesis. Our results also demonstrate the advantage of using the PET approach in conjunction with KEGG database for systematic pathway analysis.</p

    Assessing Causality in the Relationship Between Adolescents’ Risky Sexual Online Behavior and Their Perceptions of this Behavior

    Get PDF
    The main aim of this study was to investigate the causal nature of the relationship between adolescents’ risky sexual behavior on the internet and their perceptions of this behavior. Engagement in the following online behaviors was assessed: searching online for someone to talk about sex, searching online for someone to have sex, sending intimate photos or videos to someone online, and sending one’s telephone number and address to someone exclusively known online. The relationship between these behaviors and adolescents’ perceptions of peer involvement, personal invulnerability, and risks and benefits was investigated. A two-wave longitudinal study among a representative sample of 1,445 Dutch adolescents aged 12–17 was conducted (49% females). Autoregressive cross-lagged structural equation models revealed that perceived peer involvement, perceived vulnerability, and perceived risks were all significant predictors of risky sexual online behavior 6 months later. No reverse causal paths were found. When the relationships between perceptions and risky sexual online behavior were modeled simultaneously, only perceived peer involvement was a determinant of risky sexual online behavior. Findings highlight the importance of addressing peer involvement in future interventions to reduce adolescents’ risky sexual online behavior

    Smad phosphoisoform signals in acute and chronic liver injury: similarities and differences between epithelial and mesenchymal cells

    Get PDF
    Hepatocellular carcinoma (HCC) usually arises from hepatic fibrosis caused by chronic inflammation. In chronic liver damage, hepatic stellate cells undergo progressive activation to myofibroblasts (MFB), which are important extracellular-matrix-producing mesenchymal cells. Concomitantly, perturbation of transforming growth factor (TGF)-β signaling by pro-inflammatory cytokines in the epithelial cells of the liver (hepatocytes) promotes both fibrogenesis and carcinogenesis (fibro-carcinogenesis). Insights into fibro-carcinogenic effects on chronically damaged hepatocytes have come from recent detailed analyses of the TGF-β signaling process. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β type I receptor and pro-inflammatory cytokine-activated kinases differentially phosphorylate Smad2 and Smad3 to create phosphoisoforms phosphorylated at the COOH-terminal, linker, or both (L/C) regions. After acute liver injury, TGF-β-mediated pSmad3C signaling terminates hepatocytic proliferation induced by the pro-inflammatory cytokine-mediated mitogenic pSmad3L pathway; TGF-β and pro-inflammatory cytokines synergistically enhance collagen synthesis by activated hepatic stellate cells via pSmad2L/C and pSmad3L/C pathways. During chronic liver disease progression, pre-neoplastic hepatocytes persistently affected by TGF-β together with pro-inflammatory cytokines come to exhibit the same carcinogenic (mitogenic) pSmad3L and fibrogenic pSmad2L/C signaling as do MFB, thereby accelerating liver fibrosis while increasing risk of HCC. This review of Smad phosphoisoform-mediated signals examines similarities and differences between epithelial and mesenchymal cells in acute and chronic liver injuries and considers Smad linker phosphorylation as a potential target for the chemoprevention of fibro-carcinogenesis

    Targeting of the MYCN protein with small molecule c-MYC inhibitors

    Get PDF
    This study was funded by grants from the Swedish Research Council and the Swedish Cancer Society. IM and HZ were recipients of graduate student grants from KI (KID), MAH was recipient of a Senior Investigator Award from the Swedish Cancer Society, and NJW was a Royal Society University Research Fellow when this work began.Members of the MYC family are the most frequently deregulated oncogenes in human cancer and are often correlated with aggressive disease and/or poorly differentiated tumors. Since patients with MYCN-amplified neuroblastoma have a poor prognosis, targeting MYCN using small molecule inhibitors could represent a promising therapeutic approach. We have previously demonstrated that the small molecule 10058-F4, known to bind to the c-MYC bHLHZip dimerization domain and inhibiting the c-MYC/MAX interaction, also interferes with the MYCN/MAX dimerization in vitro and imparts anti-tumorigenic effects in neuroblastoma tumor models with MYCN overexpression. Our previous work also revealed that MYCN-inhibition leads to mitochondrial dysfunction resulting in accumulation of lipid droplets in neuroblastoma cells. To expand our understanding of how small molecules interfere with MYCN, we have now analyzed the direct binding of 10058-F4, as well as three of its analogs; #474, #764 and 10058-F4(7RH), one metabolite C-m/z 232, and a structurally unrelated c-MYC inhibitor 10074-G5, to the bHLHZip domain of MYCN. We also assessed their ability to induce apoptosis, neurite outgrowth and lipid accumulation in neuroblastoma cells. Interestingly, all c-MYC binding molecules tested also bind MYCN as assayed by surface plasmon resonance. Using a proximity ligation assay, we found reduced interaction between MYCN and MAX after treatment with all molecules except for the 10058-F4 metabolite C-m/z 232 and the non-binder 10058-F4(7RH). Importantly, 10074-G5 and 10058-F4 were the most efficient in inducing neuronal differentiation and lipid accumulation in MYCN-amplified neuroblastoma cells. Together our data demonstrate MYCN-binding properties for a selection of small molecules, and provide functional information that could be of importance for future development of targeted therapies against MYCN-amplified neuroblastoma.Publisher PDFPeer reviewe
    corecore