71 research outputs found

    Insulin increases epiblast cell number of in vitro cultured mouse embryos via the PI3K/GSK3/p53 pathway

    Get PDF
    High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos. However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular mechanism of the insulin's effect. Culture in media containing 1.7 ρM insulin increased epiblast cell number (determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phosphoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2 s messengers inactivated by insulin signaling (via CT99021 or pifithrin-α, respectively), increased epiblast cell numbers. When active, GSK3 and p53 block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, respectively), blocked the insulin's effect on the epiblast.From our findings, we conclude that insulin increases epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with which the ESC lines can be derived from cultured embryos.Jared M. Campbell, Mark B. Nottle, Ivan Vassiliev, Megan Mitchell, and Michelle Lan

    AMP-Activated Kinase AMPK Is Expressed in Boar Spermatozoa and Regulates Motility

    Get PDF
    The main functions of spermatozoa required for fertilization are dependent on the energy status and metabolism. AMP-activated kinase, AMPK, acts a sensor and regulator of cell metabolism. As AMPK studies have been focused on somatic cells, our aim was to investigate the expression of AMPK protein in spermatozoa and its possible role in regulating motility. Spermatozoa from boar ejaculates were isolated and incubated under different conditions (38,5°C or 17°C, basal medium TBM or medium with Ca2+ and bicarbonate TCM, time from 1–24 hours) in presence or absence of AMPK inhibitor, compound C (CC, 30 ”M). Western blotting reveals that AMPK is expressed in boar spermatozoa at relatively higher levels than in somatic cells. AMPK phosphorylation (activation) in spermatozoa is temperature-dependent, as it is undetectable at semen preservation temperature (17°C) and increases at 38,5°C in a time-dependent manner. AMPK phosphorylation is independent of the presence of Ca2+ and/or bicarbonate in the medium. We confirm that CC effectively blocks AMPK phosphorylation in boar spermatozoa. Analysis of spermatozoa motility by CASA shows that CC treatment either in TBM or in TCM causes a significant reduction of any spermatozoa motility parameter in a time-dependent manner. Thus, AMPK inhibition significantly decreases the percentages of motile and rapid spermatozoa, significantly reduces spermatozoa velocities VAP, VCL and affects other motility parameters and coefficients. CC treatment does not cause additional side effects in spermatozoa that might lead to a lower viability even at 24 h incubation. Our results show that AMPK is expressed in spermatozoa at high levels and is phosphorylated under physiological conditions. Moreover, our study suggests that AMPK regulates a relevant function of spermatozoa, motility, which is essential for their ultimate role of fertilization

    Enhancing Chemotherapy Response with Bmi-1 Silencing in Ovarian Cancer

    Get PDF
    Undoubtedly ovarian cancer is a vexing, incurable disease for patients with recurrent cancer and therapeutic options are limited. Although the polycomb group gene, Bmi-1 that regulates the self-renewal of normal stem and progenitor cells has been implicated in the pathogenesis of many human malignancies, yet a role for Bmi-1 in influencing chemotherapy response has not been addressed before. Here we demonstrate that silencing Bmi-1 reduces intracellular GSH levels and thereby sensitizes chemoresistant ovarian cancer cells to chemotherapeutics such as cisplatin. By exacerbating ROS production in response to cisplatin, Bmi-1 silencing activates the DNA damage response pathway, caspases and cleaves PARP resulting in the induction apoptosis in ovarian cancer cells. In an in vivo orthotopic mouse model of chemoresistant ovarian cancer, knockdown of Bmi-1 by nanoliposomal delivery significantly inhibits tumor growth. While cisplatin monotherapy was inactive, combination of Bmi-1 silencing along with cisplatin almost completely abrogated ovarian tumor growth. Collectively these findings establish Bmi-1 as an important new target for therapy in chemoresistant ovarian cancer

    Rate and duration of hospitalisation for acute pulmonary embolism in the real-world clinical practice of different countries : Analysis from the RIETE registry

    Get PDF
    publishersversionPeer reviewe

    The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry

    Get PDF
    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with >80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes
    • 

    corecore