49 research outputs found

    Eave tubes for malaria control in Africa : an introduction

    Get PDF
    In spite of massive progress in the control of African malaria since the turn of the century, there is a clear and recognized need for additional tools beyond long-lasting insecticide-treated bed nets (LLINs) and indoor residual spraying (IRS) of insecticides, to progress towards elimination. Moreover, widespread and intensifying insecticide resistance requires alternative control agents and delivery systems to enable development of effective insecticide resistance management strategies. This series of articles presents a novel concept for malaria vector control, the ‘eave tube’, which may fulfil these important criteria. From its conceptualization to laboratory and semi-field testing, to demonstration of potential for implementation, the stepwise development of this new vector control approach is described. These studies suggest eave tubes (which comprise a novel way of delivering insecticides plus screening to make the house more ‘mosquito proof’) could be a viable, cost-effective, and acceptable control tool for endophilic and endophagic anophelines, and possibly other (nuisance) mosquitoes. The approach could be applicable in a wide variety of housing in sub-Saharan Africa, and possibly beyond, for vectors that use the eave as their primary house entry point. The results presented in these articles were generated during an EU-FP7 funded project, the mosquito contamination device (MCD) project, which ran between 2012 and 2015. This was a collaborative project undertaken by vector biologists, product developers, modellers, materials scientists, and entrepreneurs from five different countries

    Evaluating the impact of screening plus eave tubes on malaria transmission compared to current best practice in central Côte d'Ivoire : A two armed cluster randomized controlled trial

    Get PDF
    Background: Access to long-lasting insecticidal nets (LLINs) has increased and malaria has decreased globally, but malaria transmission remains high in parts of sub-Saharan Africa and insecticide resistance threatens current progress. Eave tubes are a new tool for the targeted delivery of insecticides against mosquitoes attempting to enter houses. The primary objective of this trial is to test whether screening plus eave tubes (SET) provides protection against malaria, on top of universal coverage with LLINs in an area of intense pyrethroid resistance. The trial will also assess acceptability and cost-effectiveness of the intervention. Methods/design: A two-armed, cluster randomized controlled trial will be conducted to evaluate the effect of SET on clinical malaria incidence in children living in central Côte d'Ivoire. Forty villages will be selected based on population size and the proportion of houses suitable for modification with SET. Using restricted randomization, half the villages will be assigned to the treatment arm (SET + LLINs) and the remainder will be assigned to the control arm (LLINs only). In both arms, LLINs will be distributed and in the treatment arm, householders will be offered SET. Fifty children aged six months to eight years old will be enrolled from randomly selected households in each of the 40 villages. Cohorts will be cleared of malaria parasites at the start of the study and one year after recruitment, and will be monitored for clinical malaria case incidence by active case detection over two years. Mosquito densities will be assessed using CDC light traps and human landing catches and a subset of Anopheles mosquitoes will be examined for parity status and tested for sporozoite infection. Acceptability of SET will be monitored using surveys and focus groups. Cost-effectiveness analysis will measure the incremental cost per case averted and per disability-adjusted life year (DALY) averted of adding SET to LLINs. Economic and financial costs will be estimated from societal and provider perspective using standard economic evaluation methods. Discussion: This study will be the first evaluation of the epidemiological impact of SET. Trial findings will show whether SET is a viable, cost-effective technology for malaria control in Côte d'Ivoire and possibly elsewhere. Trial registration: ISRCTN18145556, registered on 01 February 2017 - retrospectively registered

    Semi-field evaluation of the cumulative effects of a "lethal House Lure" on malaria mosquito mortality

    Get PDF
    Background: There is growing interest in the potential to modify houses to target mosquitoes with insecticides or repellents as they search for human hosts. One version of this 'Lethal House Lure' approach is the In2Care® EaveTube, which consists of a section of polyvinyl chloride (PVC) pipe fitted into a closed eave, with an insert comprising electrostatic netting treated with insecticide powder placed inside the tube. Preliminary evidence suggests that when combined with screening of doors and windows, there is a reduction in entry of mosquitoes and an increase in mortality. However, the rate of overnight mortality remains unclear. The current study used a field enclosure built around experimental huts to investigate the mortality of cohorts of mosquitoes over multiple nights. Methods: Anopheles gambiae sensu lato mosquitoes were collected from the field as larvae and reared through to adult. Three-to-five days old adult females were released inside an enclosure housing two modified West African style experimental huts at a field site in M'be, Côte d'Ivoire. Huts were either equipped with insecticide-treated tubes at eave height and had closed windows (treatment) or had open windows and open tubes (controls). The number of host-seeking mosquitoes entering the huts and cumulative mortality were monitored over 2 or 4 days. Results: Very few (0-0.4%) mosquitoes were able to enter huts fitted with insecticide-treated tubes and closed windows. In contrast, mosquitoes continually entered the control huts, with a cumulative mean of 50-80% over 2 to 4 days. Baseline mortality with control huts was approximately 2-4% per day, but the addition of insecticide-treated tubes increased mortality to around 25% per day. Overall cumulative mortality was estimated to be up to 87% over 4 days when huts were fitted with tubes. Conclusion: Only 20-25% of mosquitoes contacted insecticide-treated tubes or entered control huts in a given night. However, mosquitoes continue to host search over sequential nights, and this can lead to high cumulative mortality over 2 to 4 days. This mortality should contribute to community-level reduction in transmission assuming sufficient coverage of the intervention

    Failure analysis in ITO-free all-solution processed organic solar cells

    No full text
    \u3cp\u3eIn this paper we discuss a problem-solving methodology and present guidance for troubleshooting defects in ITO-free all-solution processed organic solar cells with an inverted cell architecture. A systematic approach for identifying the main causes of failures in devices is presented. Comprehensive analysis of the identified failure mechanisms allowed us to propose practical solutions for further avoiding and eliminating failures in all-solution processed organic solar cells. Implementation of the proposed solutions has significantly improved the yield and quality of all-solution processed organic solar cells.\u3c/p\u3
    corecore