45 research outputs found

    The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars

    Get PDF
    Heat stress is a severe challenge for plant production, and the use of thermotolerant cultivars is critical to ensure stable production in high-temperature-prone environments. However, the selection of thermotolerant cultivars is difficult due to the complex nature of heat stress and the time and space needed for evaluation. In this study, we characterized genome-wide differences in gene expression between thermotolerant and thermosensitive tomato cultivars and examined the possibility of selecting gene expression markers to estimate thermotolerance among different tomato cultivars. We selected one thermotolerant and one thermosensitive cultivar based on physiological evaluations and compared heat-responsive gene expression in these cultivars under stepwise heat stress and acute heat shock conditions. Transcriptomic analyses reveled that two heat-inducible gene expression pathways, controlled by the heat shock element (HSE) and the evening element (EE), respectively, presented different responses depending on heat stress conditions. HSE-regulated gene expression was induced under both conditions, while EE-regulated gene expression was only induced under gradual heat stress conditions in both cultivars. Furthermore, HSE-regulated genes showed higher expression in the thermotolerant cultivar than the sensitive cultivar under acute heat shock conditions. Then, candidate expression biomarker genes were selected based on the transcriptome data, and the usefulness of these candidate genes was validated in five cultivars. This study shows that the thermotolerance of tomato is correlated with its ability to maintain the heat shock response (HSR) under acute severe heat shock conditions. Furthermore, it raises the possibility that the robustness of the HSR under severe heat stress can be used as an indicator to evaluate the thermotolerance of crop cultivars

    Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a 238U Beam at 345 MeV/nucleon

    Full text link
    A search for new isotopes using in-flight fission of a 345 MeV/nucleon 238U beam has been carried out at the RI Beam Factory at the RIKEN Nishina Center. Fission fragments were analyzed and identified by using the superconducting in-flight separator BigRIPS. We observed 45 new neutron-rich isotopes: 71Mn, 73,74Fe, 76Co, 79Ni, 81,82Cu, 84,85Zn, 87Ga, 90Ge, 95Se, 98Br, 101Kr, 103Rb, 106,107Sr, 108,109Y, 111,112Zr, 114,115Nb, 115,116,117Mo, 119,120Tc, 121,122,123,124Ru, 123,124,125,126Rh, 127,128Pd, 133Cd, 138Sn, 140Sb, 143Te, 145I, 148Xe, and 152Ba

    A Review of 65 Cases of Unruptured Aneurysms under Observation: The Risks of Untreated Aneurysm under 5 mm in Size.

    No full text

    Management of Patients with Incidentally Discovered Unruptured Cerebral Aneurysms.

    No full text

    DORSAL ROOT REGENERATION INTO TRANSPLANTS OF DORSAL OR VENTRAL HALF OF EMBRYONIC SPINAL CORD

    Get PDF
    Adult cut dorsal root axons regenerate into the transplants of embryonic spinal cord (ESC) and form functional synapses within the transplants. It is unknown whether the growth is specific to transplants of dorsal half of ESC, a normal target of most dorsal root axons, or whether it is due to properties shared by transplants of ventral half of ESC. We used calcitonin gene-related peptide (CGRP) immunohistochemistry to label to the subpopulations of regenerated adult dorsal root axons, quantitative analysis to compare the extent of dorsal root regeneration, and also compare neuronal composition within both transplants. Adult Sprague-Dawley rats received intraspinal grafts of dorsal or ventral half ESC (E14), and the L4 or L5 dorsal root was cut and juxtaposed to the transplants. Three months later sagittal sections were prepared for CGRP immunohistochemistry and Nissl-Myelin stain. Dorsal root axons regenerated into both kinds of transplants, but growth into dorsal half of ESC was more robust than that into ventral half of ESC. Histograms of the perikaryal area showed that the transplants of dorsal half ESC consisted of small neurons predominantly, whereas transplants of ventral half ESC consisted neurons of variable sizes with abundant myelination. These results indicate that both kinds of ESC may help to rebuild damaged spinal reflex circuits after spinal cord injury
    corecore