1,509 research outputs found

    Comparative study of the effects of electron irradiation and natural disorder in single crystals of SrFe2_{2}(As1x_{1-x}Px_x)2_2 (x=x=0.35) superconductor

    Get PDF
    London penetration depth, λ(T)\lambda(T), was measured in single crystals of SrFe2_2(As1x_{1-x}Px_x)2_2 (x=x=0.35) iron - based superconductor. The influence of disorder on the transition temperature, TcT_c, and on λ(T)\lambda(T) was investigated. The effects of scattering controlled by the annealing of as-grown crystals was compared with the effects of artificial disorder introduced by 2.5~MeV electron irradiation. The low temperature behavior of λ(T)\lambda(T) can be described by a power-law function, Δλ(T)=ATn\Delta \lambda (T)=AT^n, with the exponent nn close to one in pristine annealed samples, as expected for superconducting gap with line nodes. Upon 1.2×10191.2 \times 10^{19} \ecm irradiation, the exponent nn increases rapidly exceeding a dirty limit value of n=n= 2 implying that the nodes in the superconducting gap are accidental and can be lifted by the disorder. The variation of the exponent nn with TcT_c is much stronger in the irradiated crystals compared to the crystals in which disorder was controlled by the annealing of the growth defects. We discuss the results in terms of different influence of different types of disorder on intra- and inter- band scattering

    Electron and orbital correlations in Ca_{2-x}Sr_{x}RuO_{4} probed by optical spectroscopy

    Full text link
    The doping and temperature dependent optical conductivity spectra of the quasi-two-dimensional Ca_{2-x}Sr_xRuO_4 (0.0=<x=<2.0) system were investigated. In the Mott insulating state, two electron correlation-induced peaks were observed around 1.0 and 1.9 eV, which could be understood in terms of the 3-orbital Hubbard model. The low frequency peak showed a shift toward higher frequency as temperature was lowered, which indicated that electron-phonon interactions play an important role in the orbital arrangements. From the systematic analysis, it was suggested that the antiferro-orbital and the ferro-orbital ordering states could coexist.Comment: 12 pages, 4 figure

    Magnetic neutron scattering study of YVO3: Evidence for an orbital Peierls state

    Get PDF
    Neutron spectroscopy has revealed a highly unusual magnetic structure and dynamics in YVO3_3, an insulating pseudocubic perovskite that undergoes a series of temperature induced phase transitions between states with different spin and orbital ordering patterns. A good description of the neutron data is obtained by a theoretical analysis of the spin and orbital correlations of a realistic one-dimensional model. This leads to the tentative identification of one of the phases of YVO3_3 with the ``orbital Peierls state'', a theoretically proposed many-body state comprised of orbital singlet bonds.Comment: final version, to appear in PR

    Early (<<0.3 day) R-band light curve of the optical afterglow of GRB030329

    Full text link
    We observed the optical afterglow of the bright gamma-ray burst GRB030329 on the nights of 2003 March 29, using the Kiso observatory (the University of Tokyo) 1.05 m Schmidt telescope. Data were taken from March 29 13:21:26 UT to 17:43:16 (0.072 to 0.253 days after the burst), using an RcRc-band filter. The obtained RcRc-band light curve has been fitted successfully by a single power law function with decay index of 0.891±0.0040.891\pm0.004. These results remain unchanged when incorporating two early photometric data points at 0.065 and 0.073 days, reported by Price et al.(2003) using the SSO 40 inch telescope, and further including RTT150 data (Burenin et al. 2003) covering at about 0.3 days. Over the period of 0.065-0.285 days after the burst, any deviation from the power-law decay is smaller than ±\pm0.007 mag. The temporal structure reported by Uemura et al. (2003) does not show up in our RR-band light curve.Comment: 9 pages, 2 figures, 1 table, accepted for publication in ApJ

    Orbital Wave and its Observation in Orbital Ordered Titanates and Vanadates

    Get PDF
    We present a theory of the collective orbital excitation termed orbital wave in perovskite titanates and vanadates with the triply degenerate t2gt_{2g} orbitals. The dispersion relations of the orbital waves for the orbital ordered LaVO3_3, YVO3_3 and YTiO3_3 are examined in the effective spin-orbital coupled Hamiltonians associated with the Jahn-Teller type couplings. We propose possible scattering processes for the Raman and inelastic neutron scatterings from the orbital wave and calculate the scattering spectra for titanates and vanadates. It is found that both the excitation spectra and the observation methods of the orbital wave are distinct qualitatively from those for the ege_g orbital ordered systems.Comment: 9 pages, 7 figure
    corecore