28 research outputs found
Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model
<p>Abstract</p> <p>Background</p> <p>Schizophrenia is a debilitating and complex mental disorder whose exact etiology remains unknown. There is growing amount of evidence of a relationship between neuroinflammation, as demonstrated by microglial activation, and schizophrenia. Our previous studies have proposed that hyperbilirubinemia plays a role in the pathophysiology of schizophrenia. Furthermore, we suggested the Gunn rat, an animal model of bilirubin encephalopathy, as a possible animal model of schizophrenia. However, the effects of unconjugated bilirubin on microglia, the resident immune cell of the CNS, in Gunn rats have never been investigated. In the present study, we examined how microglial cells respond to bilirubin toxicity in adult Gunn rats.</p> <p>Methods</p> <p>Using immunohistochemical techniques, we compared the distribution, morphology, and ultrastructural features of microglial cells in Gunn rats with Wistar rats as a normal control. We also determined the ratio of activated and resting microglia and observed microglia-neuron interactions. We characterized the microglial cells in the hippocampal dentate gyrus.</p> <p>Results</p> <p>We found that microglial cells showed activated morphology in the hilus, subgranular zone, and granular layer of the Gunn rat hippocampal dentate gyrus. There was no significant difference between cell numbers between in Gunn rats and controls. However, there was significant difference in the area of CD11b expression in the hippocampal dentate gyrus. Ultrastructurally, microglial cells often contained rich enlarged rich organelles in the cytoplasm and showed some phagocytic function.</p> <p>Conclusions</p> <p>We propose that activation of microglia could be an important causal factor of the behavioral abnormalities and neuropathological changes in Gunn rats. These findings may provide basic information for further assessment of the Gunn rat as an animal model of schizophrenia.</p
Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial
Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie
Decreased Clostridium Abundance after Electroconvulsive Therapy in the Gut Microbiota of a Patient with Schizophrenia
Relationships between gut microbiota and various disease pathogeneses have been investigated, but those between the pathogeneses of mental illnesses, including schizophrenia, and gut microbiota have only recently attracted attention. We observed a change in the gut microbiota of a patient with schizophrenia after administering electroconvulsive therapy (ECT). A 59-year-old woman was diagnosed with schizophrenia at 17 years of age and has been taking antipsychotic drugs since the diagnosis. Clostridium, which occupied 86.5% of her bacterial flora, decreased to 72.5% after 14 ECT sessions, while Lactobacillus increased from 1.2% to 5.5%, and Bacteroides increased from 9.1% to 31.5%. Previous studies have shown that Clostridium spp. are increased in patients with schizophrenia compared with those in healthy individuals and that Clostridium is reduced after pharmacological treatment. Our report is the first report on the gut microbiota of a patient with schizophrenia receiving ECT. Our results indicate that studies focusing on Clostridium to clarify the pathogenesis of schizophrenia as well as potential therapeutic mechanisms may be beneficial. However, further studies are needed
Salivary Alpha-Amylase Activity Levels in Catatonic Schizophrenia Decrease after Electroconvulsive Therapy
Background. Dysfunction of the autonomic nervous system (ANS) in schizophrenia has been detected by electrophysiological methods, but the underlying mechanisms remain unknown. Several studies have suggested that measuring salivary alpha-amylase activity levels is useful for evaluating the ANS activity and that sAA levels increase in schizophrenia and correlate with Brief Psychiatric Rating Scale (BPRS) scores. However, no study has examined the relationship between sAA activity levels and symptoms of schizophrenia with catatonic state. Methods. We present the case of a 59-year-old female with persistent catatonic schizophrenia treated by electroconvulsive therapy. We evaluated the ANS activity by measuring sAA activity levels before and after ECT, and we evaluated her symptoms using the BPRS and Bush–Francis Catatonia Rating Scale (BFCRS). Results. ECT was highly effective and BPRS and BFCRS scores substantially decreased. sAA activity levels decreased from 125 kU/l to 33 kU/l. Conclusions. sAA activity levels could be a potential biomarker of schizophrenia with catatonic state
Salivary Alpha-Amylase Activity Levels in Catatonic Schizophrenia Decrease after Electroconvulsive Therapy
Background. Dysfunction of the autonomic nervous system (ANS) in schizophrenia has been detected by electrophysiological methods, but the underlying mechanisms remain unknown. Several studies have suggested that measuring salivary alpha-amylase activity levels is useful for evaluating the ANS activity and that sAA levels increase in schizophrenia and correlate with Brief Psychiatric Rating Scale (BPRS) scores. However, no study has examined the relationship between sAA activity levels and symptoms of schizophrenia with catatonic state. Methods. We present the case of a 59-year-old female with persistent catatonic schizophrenia treated by electroconvulsive therapy. We evaluated the ANS activity by measuring sAA activity levels before and after ECT, and we evaluated her symptoms using the BPRS and Bush–Francis Catatonia Rating Scale (BFCRS). Results. ECT was highly effective and BPRS and BFCRS scores substantially decreased. sAA activity levels decreased from 125 kU/l to 33 kU/l. Conclusions. sAA activity levels could be a potential biomarker of schizophrenia with catatonic state
May Salivary Alpha-Amylase Level Be a Useful Tool for Assessment of the Severity of Schizophrenia and Evaluation of Therapy? A Case Report
Background. Previous studies suggested dysfunction of the autonomic nervous system (ANS) in schizophrenia patients, but the mechanism remains unclear. Recently, the measurement of salivary alpha-amylase (sAA) has been considered a useful tool for evaluating ANS, especially the sympathoadrenal medullary system. Furthermore, there was a report that patients with schizophrenia showed much higher sAA level than normal controls.
Methods. We present the case of a 51-year-old female with catatonic schizophrenia. She needed the treatment of electroconvulsive therapy (ECT). We evaluated her sAA level and her psychiatric symptoms during the treatment. Results. Before ECT treatment, she showed high sAA level. Her sAA level decreased during the course of ECT, and this attenuation was accompanied by improvement of schizophrenic symptoms. Conclusion. We consider that measurement of the sAA level may be one of the useful biological markers for assessment of psychotic state and efficacy of treatment in patients with schizophrenia
Implications of Systemic Inflammation and Periodontitis for Major Depression
Increasing evidence suggests that infection and persistent low-grade inflammation in peripheral tissues are important pathogenic factors in major depression. Major depression is frequently comorbid with systemic inflammatory diseases/conditions such as rheumatoid arthritis, allergies of different types, multiple sclerosis, cardiovascular disease, inflammatory bowel disease, chronic liver disease, diabetes, and cancer, in which pro-inflammatory cytokines are overexpressed. A number of animal studies demonstrate that systemic inflammation induced by peripheral administration of lipopolysaccharide increases the expression of pro-inflammatory cytokines in both the periphery and brain and causes abnormal behavior similar to major depression. Systemic inflammation can cause an increase in CNS levels of pro-inflammatory cytokines associated with glial activation, namely, neuroinflammation, through several postulated pathways. Such neuroinflammation can in turn induce depressive moods and behavioral changes by affecting brain functions relevant to major depression, especially neurotransmitter metabolism. Although various clinical studies imply a causal relationship between periodontitis, which is one of the most common chronic inflammatory disorders in adults, and major depression, the notion that periodontitis is a risk factor for major depression is still unproven. Additional population-based cohort studies or prospective clinical studies on the relationship between periodontitis and major depression are needed to substantiate the causal link of periodontitis to major depression. If such a link is established, periodontitis may be a modifiable risk factor for major depression by simple preventive oral treatment