7,735 research outputs found

    Modeling The X-ray Timing Properties Of Cygnus X-1 As Caused By Waves Propagating In A Transition Disk

    Get PDF
    We show that waves propagating in a transition disk can explain the short term temporal behavior of Cygnus X-1. In the transition disk model the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broad band spectrum of this source better than that predicted by the soft-photon Comptonization model. Here, we consider a simple model where waves are propagating cylindrically symmetrical ly in the transition disk with a uniform propagation speed (cpc_p). We show that this model can qualitatively explain (a) the variation of the power spectral density (PSD) with energy, (b) the hard lags as a function of frequency and (c) the hard lags as a function of energy for various frequencies. Thus the transition disk model can explain the average spectrum and the short term temporal behavior of Cygnus X-1.Comment: accepted for publication in APJ letter

    Comprehensive Spectral Analysis of Cyg X-1 using RXTE Data

    Full text link
    We analyse a large number (>500> 500) pointed RXTE observations of Cyg X-1 and model the spectrum of each one. A subset of the observations for which there is simultaneous reliable measure of the hardness ratio by the All Sky Monitor, shows that the sample covers nearly all the spectral shapes of Cyg X-1. The relative strength, width of the Iron line and the reflection parameter are in general correlated with the high energy photon spectral index Γ\Gamma. This is broadly consistent with a geometry where for the hard state (low Γ∼1.7\Gamma \sim 1.7) there is a hot inner Comptonizing region surrounded by a truncated cold disk. The inner edge of the disk moves inwards as the source becomes softer till finally in the soft state (high Γ>2.2\Gamma > 2.2) the disk fills the inner region and active regions above the disk produce the Comptonized component. However, the reflection parameter shows non-monotonic behaviour near the transition region (Γ∼2\Gamma \sim 2), suggestive of a more complex geometry or physical state of the reflector. Additionally, the inner disk temperature, during the hard state, is on the average higher than in the soft one, albeit with large scatter. These inconsistencies could be due to limitations in the data and the empirical model used to fit them. The flux of each spectral component is well correlated with Γ\Gamma which shows that unlike some other black hole systems, Cyg X-1 does not show any hysteresis behaviour. In the soft state, the flux of the Comptonized component is always similar to the disk one, which confirms that the ultra-soft state (seen in other brighter black hole systems) is not exhibited by Cyg X-1. The rapid variation of the Compton Amplification factor with Γ\Gamma, naturally explains the absence of spectra with Γ<1.6\Gamma < 1.6, despite a large number having Γ∼1.65\Gamma \sim 1.65.Comment: 12 pages, 8 figures, accepted for publication in Research in Astronomy and Astrophysics (RAA

    A Review of Models for Evaluating Quality in Open Source Software

    Get PDF
    Open source products/projects targeting the same or similar applications are common nowadays. This makes choosing a tricky task. Quality is one factor that can be considered when choosing among similar open source solutions. In order to measure quality in software, quality models can be used. Open source quality models emerged due to the inability of traditional quality models to measure unique features (such as community) of open source software. The aim of the paper therefore is to examine the characteristic features, unique strengths, and limitations of existing open source quality models. In addition, we compare the models based on some selected attributes

    Modulational instability of ion-acoustic wave packets in quantum pair-ion plasmas

    Full text link
    Amplitude modulation of quantum ion-acoustic waves (QIAWs) in a quantum electron-pair-ion plasma is studied. It is shown that the quantum coupling parameter HH (being the ratio of the plasmonic energy density to the Fermi energy) is ultimate responsible for the modulational stability of QIAW packets, without which the wave becomes modulational unstable. New regimes for the modulational stability (MS) and instability (MI) are obtained in terms of HH and the positive to negative ion density ratio β\beta. The growth rate of MI is obtained, the maximum value of which increases with β\beta and decreases with HH. The results could be important for understanding the origin of modulated QIAW packets in the environments of dense astrophysical objects, laboratory negative ion plasmas as well as for the next generation laser solid density plasma experiments.Comment: 4 pages, 2 figures (to appear in Astrophysics and Space Science

    Gluon Condensates, Chiral Symmetry Breaking and Pion Wave Function

    Full text link
    We consider here chiral symmetry breaking in quantum chromodynamics arising from gluon condensates in vacuum. Through coherent states of gluons simulating a mean field type of approximation, we show that the off-shell gluon condensates of vacuum generate a mass-like contribution for the quarks, giving rise to chiral symmetry breaking. We next note that spontaneous breaking of global chiral symmetry links the four component quark field operator to the pion wave function. This in turn yields many hadronic properties in the light quark sector in agreement with experiments, leading to the conclusion that low energy hadron properties are primarily driven by the vacuum structure of quantum chromodynamics.Comment: 25 pages, IP/BBSR/92-76, revte
    • …
    corecore