25,966 research outputs found

    Chiral Symmetry Breaking and Pion Wave Function

    Full text link
    We consider here chiral symmetry breaking through nontrivial vacuum structure with quark antiquark condensates. We then relate the condensate function to the wave function of pion as a Goldstone mode. This simultaneously yields the pion also as a quark antiquark bound state as a localised zero mode in vacuum. We illustrate the above with Nambu Jona-Lasinio model to calculate different pionic properties in terms of the vacuum structure for breaking of exact or approximate chiral symmetry, as well as the condensate fluctuations giving rise to σ\sigma mesons.Comment: latex, revtex, 16 page

    Vacuum structure and effective potential at finite temperature: a variational approach

    Full text link
    We compute the effective potential for ϕ4\phi^4 theory with a squeezed coherent state type of construct for the ground state. The method essentially consists in optimising the basis at zero and finite temperatures. The gap equation becomes identical to resumming the infinite series of daisy and super daisy graphs while the effective potential includes multiloop effects and agrees with that obtained through composite operator formalism at finite temperature.Comment: 15 pages, Revtex, No figures, to appear in Jou. of Phys.G(Nucl. and Part. Phys.

    Anisotropic cosmological models with two fluids

    Full text link
    In this paper, aniostropic dark energy cosmological models have been constructed in a Bianchi-V space-time with the energy momentum tensor consisting of two non-interacting fluids namely bulk viscous fluid and dark energy fluid. Two different models are constructed based on the power law cosmology and de Sitter universe. The constructed model also embedded with different pressure gradients along different spatial directions. The variable equation of state (EoS) parameter, skewness parameters for both the models are obtained and analyzed. The physical properties of the models obtained with the use of scale factors of power law and de Sitter law are also presented.Comment: 10 pages, 12 figure

    Structure of the Vacuum in Nuclear Matter - A Nonperturbative Approach

    Get PDF
    We compute the vacuum polarisation correction to the binding energy of nuclear matter in the Walecka model using a nonperturbative approach. We first study such a contribution as arising from a ground state structure with baryon-antibaryon condensates. This yields the same results as obtained through the relativistic Hartree approximation of summing tadpole diagrams for the baryon propagator. Such a vacuum is then generalized to include quantum effects from meson fields through scalar-meson condensates. The method is applied to study properties of nuclear matter and leads to a softer equation of state giving a lower value of the incompressibility than would be reached without quantum effects. The density dependent effective sigma mass is also calculated including such vacuum polarisation effects.Comment: 26 pages including 5 eps files, uses revtex style; PACS number: 21.65.+f,21.30.+

    Fluctuation Induced Non-Fermi Liquid Behavior near a Quantum Phase Transition in Itinerant Electron Systems

    Full text link
    The signature for a non-Fermi liquid behavior near a quantum phase transition has been observed in thermal and transport properties of many metallic systems at low temperatures. In the present work we consider specific examples of itinerant ferromagnet as well as antiferromagnet in the limit of vanishing transition temperature. The temperature variation of spin susceptibility, electrical resistivity, specific heat, and NMR relaxation rates at low temperatures is calculated in the limit of infinite exchange enhancement within the frame work of a self consistent spin fluctuation theory. The resulting non-Fermi liquid behavior is due to the presence of the low lying critically damped spin fluctuations in these systems. The theory presented here gives the leading low temperature behavior, as it turns out that the fluctuation correlation term is always smaller than the mean fluctuation field term in three as well as in two space dimensions. A comparison with illustrative experimental results of these properties in some typical systems has been done. Finally we make some remarks on the effect of disorder in these systems.Comment: File RevTex, 7 Figures available on request, Abstract and text modified, To appear in Phys. Rev.

    Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Full text link
    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: Ultrashort terahertz (THz) excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, the pairwise and the many body entanglement. If the characteristic frequencies of the generated states are non-commensurate then a partial loss of pair concurrence occurs. Increasing the system size this effect becomes even more pronounced. Many particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench- induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.Comment: 13 pages, 10 figures, submitted in PR
    corecore