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Structure of the vacuum in nuclear matter: A nonperturbative approach
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We compute the vacuum polarization correction to the binding energy of nuclear matter in the Walecka
model using a nonperturbative approach. We first study such a contribution as arising from a ground-state
structure with baryon-antibaryon condensates. This yields the same results as obtained through the relativistic
Hartree approximation of summing tadpole diagrams for the baryon propagator. Such a vacuum is then
generalized to include quantum effects from meson fields through scalar-meson condensates which amounts to
summing over a class of multiloop diagrams. The method is applied to study properties of nuclear matter and
leads to a softer equation of state giving a lower value of the incompressibility than would be reached without
quantum effects. The density-dependent effectives mass is also calculated including such vacuum polarization
effects.@S0556-2813~97!02509-0#

PACS number~s!: 21.65.1f, 21.30.2x
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I. INTRODUCTION

Quantum hadrodynamics~QHD! is a general framework
for the nuclear many-body problem@1–3#. It is a renormal-
izable relativistic quantum field theory using hadronic d
grees of freedom and has quite successfully described
properties of nuclear matter and finite nuclei. In the Walec
model~QHD-I! with nucleons interacting with scalar~s! and
vector ~v! mesons, it has been shown in the mean-field
proximation that the saturation density and binding energy
nuclear matter may be fitted by adjusting the scalar and v
tor couplings@4#. This was first done by neglecting the Dira
sea and is called the no-sea approximation. In this appr
mation, several groups have investigated the effects of sc
self-interactions in nuclear matter@5# and finite nuclei@6#
using a mean-field approach.

To include the sea effects, one does a self-consistent
of tadpole diagrams for the baryon propagator@7#. This de-
fines the relativistic Hartree approximation. There have a
been calculations including corrections to the binding ene
up to two-loops@8#, which are seen to be rather large
compared to the one-loop results. However, it is seen
using phenomenological monopole form factors to acco
for the composite nature of the nucleons, such contributio
reduced substantially@9# so that it is smaller than the one
loop result. Recently, form factors have been introduced
cure to the unphysical modes, the so called Landau p
@10#, which one encounters while calculating the mes
propagator as modified by the interacting baryon propag
of the relativistic Hartree approximation. There have be
also attempts to calculate the form factors by vertex corr
tions @11#. However, without inclusion of such form factor
the mean-field theory is not stable against a perturbative l
expansion. This might be because the couplings invol
here are too large~of order of 10! and the theory is no
asymptotically free. Hence nonperturbative techniques n
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to be developed to consider nuclear many-body proble
The present work is a step in that direction including vacu
polarization effects.

The approximation scheme here uses a squeezed coh
type of construction for the ground state@12,13# which
amounts to an explicit vacuum realignment. The input her
equal-time quantum algebra for the field operators with
variational ansatz for the vacuum structure and does not
any perturbative expansion or Feynman diagrams. We h
earlier seen that this correctly yields the results of the Gro
Neveu model@14# as obtained by summing an infinite seri
of one-loop diagrams. We have also seen that it reprodu
the gap equation in an effective QCD Hamiltonian@15# as
obtained through the solution of the Schwinger-Dyson eq
tions for the effective quark propagator. We here apply su
a nonperturbative method to study the quantum vacuum
nuclear matter.

We organize the paper as follows. In Sec. II, we study
vacuum polarization effects in nuclear matter as simula
through a vacuum realignment with baryon-antibaryon c
densates. The condensate function is determined throu
minimization of the thermodynamic potential. The propert
of nuclear matter as arising from such a vacuum are t
studied and are seen to become identical to those obta
through the relativistic Hartree approximation. In Sec. III, w
generalize the vacuum state to includes condensates also
which are favored with a quartic term in thes field in the
Lagrangian. The effective potential as obtained here inclu
multiloop effects and agrees with that obtained through
composite operator formalism@16#. The quartic coupling is
chosen to be positive, which is necessary to consider vac
polarization effects from thes field. We also calculate the
effectives mass arising through such quantum corrections
a function of density. The coupling here is chosen to give
value for the incompressibility of nuclear matter in the co
rect range. Finally, in Sec. IV, we summarize the resu
obtained through our nonperturbative approach and pre
an outlook.
1380 © 1997 The American Physical Society
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56 1381STRUCTURE OF THE VACUUM IN NUCLEAR MATTER: . . .
II. VACUUM WITH BARYON AND ANTIBARYON
CONDENSATES

We start with the Lagrangian density for the linear W
lecka model given as

L5c̄~ igm]m2M2gss2gvgmvm!c1
1

2
]ms]ms

2
1

2
ms

2s21
1

2
mv

2 vmvm2
1

4
vmnvmn , ~1!

with

vmn5]mvn2]nvm . ~2!

In the above,c, s, andvm are the fields for the nucleon,s,
andv mesons with massesM , ms , andmv , respectively.

We use the mean-field approximation for the meson fie
and retain the quantum nature of the fermion fields@14#. This
amounts to taking meson fields as constant classical fi
with translational invariance for nuclear matter. Thus
shall replace

gss→^gss&[gss0 , ~3a!

gvvm→^gvvm&[gvvmdm05gvv0 , ~3b!

where^•••& denotes the expectation value in nuclear ma
and we have retained the zeroth component for the ve
field to have a nonzero expectation value.

The Hamiltonian density can then be written as

H5HN1Hs1Hv , ~4!

with

HN5c†~2 iaW •¹W 1bM !c1gssc̄c, ~5a!

Hs5
1

2
ms

2s2, ~5b!

Hv5gvv0c†c2
1

2
mv

2 v0
2. ~5c!

The equal-time quantization condition for the nucleons
given as

@ca~xW ,t !,cb
†~yW ,t !#15dabd~xW2yW !, ~6!

wherea andb refer to the spin indices. We may now writ
down the field expansion for the nucleon fieldc at timet50
as given by@17#

c~xW !5
1

~2p!3/2 E @Ur~kW !cIr ~kW !1Vs~2kW !c̃Is~2kW !#eikW•xWdkW ,

~7!

with cIr and c̃Is as the baryon annihilation and antibaryo
creation operators with spinsr and s, respectively. In the
above,Ur andVs are given by
-

s

ds

r
or

s

Ur~kW !5S cos
x~kW !

2

sW • k̂ sin
x~kW !

2

D uIr ,

Vs~2kW !5S 2sW • k̂ sin
x~kW !

2

cos
x~kW !

2

D v Is . ~8!

For free massive fields cosx(kW)5M/e(kW) and sinx(kW)5ukWu/e(kW),

with e(kW )5AkW21M2.
The above are consistent with the equal-time anticomm

tator algebra for the operatorsc and c̃ as given by

@cIr ~kW !,cIs
† ~kW8!#15d rsd~kW2kW8!5@ c̃Ir ~kW !,c̃ Is

† ~kW8!#1 .
~9!

The perturbative vacuum, sayuvac&, is defined through
cIr (kW )uvac&50 andc̃ Ir

† (kW )uvac&50.
To include the vacuum-polarization effects, we shall no

consider a trial state with baryon-antibaryon condensa
We thus explicitly take the ansatz for the above state as

uvac8&5expF E dkW f ~kW !cIr
† ~kW !arsc̃Is~2kW !2H.c.G uvac&

[UFuvac&. ~10!

Herears5uIr
† (sW • k̂)v Is and f (kW ) is a trial function associated

with baryon-antibaryon condensates. We note that with
above transformation the operators corresponding touvac8&
are related to the operators corresponding touvac& through
the Bogoliubov transformation

S dI~kW !

d̃I~2kW !
D 5S cosf ~kW ! 2sW • k̂ sinf ~kW !

sW • k̂ sinf ~kW ! cosf ~kW !
D S cI~kW !

c̃I~2kW !
D ,

~11!

for the nucleon.
We then use the method of thermofield dynamics@18#

developed by Umezawa to construct the ground state
nuclear matter. We generalize the state with bary
antibaryon condensates as given by Eq.~10! to finite tem-
perature and density as@13#

uF~b!&5U~b!uvac8&[U~b!UFuvac&. ~12!

The temperature-dependent unitary operatorU(b) is given
as @18#

U~b!5exp@B†~b!2B~b!#, ~13!

with

B†~b!5E dkW @u2~kW ,b!dIr
† ~kW !dI Ir

† ~2kW !

1u1~kW ,b!d̃Ir ~kW !dĨ Ir ~2kW !#. ~14!
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The underlined operators are the operators correspondin
the doubling of the Hilbert space that arises in thermofi
dynamics method. We shall determine the condensate f
tion f (kW ), and the functionsu2(kW ,b) and u1(kW ,b) of the
thermal vacuum through minimization of the thermodynam
potential. To evaluate the expectation value of the ene
density with respect to the thermal vacuum, we shall use
formula

^cg
†~xW !cd~yW !&b5

1

~2p!3 E „L2~kW ,b!…dge2 ikW•~xW2yW !dkW ,

~15!

where

L2~kW ,b!5
1

2
$~cos211sin2

2!2@g0cos„x~kW !22 f ~kW !…

1aW • k̂ sin„x~kW !22 f ~kW !…#~cos2u12sin2u2!%.

~16!

We now proceed to calculate the energy density

e[^H&b5eN1es1ev , ~17!

with

eN52
g

~2p!3 E dkW H e~kW !cos2f ~kW !2
gss0

e~k!
@M cos2f ~kW !

1ukW usin2 f ~kW !#J ~cos2u12sin2u2!, ~18a!

es5
1

2
ms

2s0
2 , ~18b!

and

ev5gvv0g~2p!23E dkW~cos2u11sin2u2!2
1

2
mv

2 v0
2 .

~18c!

The thermodynamic potential is then given as

V5e2
1

b
S2mrB , ~19!

with the entropy density

S52g~2p!23E dkW @sin2u2 ln~sin2u2!

1cos2u2 ln~cos2u2!1sin2u1 ln~sin2u1!

1cos2u1 ln~cos2u1!#1Ss1Sv ~20!

and the baryon density

rB5g~2p!23E dkW~cos2u11sin2u2!. ~21!

In the above,g is the spin isospin degeneracy factor and
equal to 4 for nuclear matter. Further,Ss and Sv are the
to
d
c-

c
y
e

contributions to the entropy density froms and v mesons,
respectively. It may be noted here that these are indepen
of the functionsf (kW ), u6(kW ,b) associated with the nucleon
and hence are not relevant for the nuclear matter propertie
zero temperature. Extremizing the thermodynamic poten
V with respect to the condensate functionf (kW ) and the func-
tions u7 yields

tan2 f ~kW !5
gss0ukW u

e~k!21Mgss0
~22!

and

sin2u75
1

exp$b@e* ~k!7m* #%11
, ~23!

with e* (k)5(k21M* 2)1/2 andm* 5m2gvv0 as the effec-
tive energy density and effective chemical potential, wh
the effective nucleon mass isM* 5M1gss0 .

Then the expression for the energy density becomes

e5eN1es1ev , ~24!

with

eN5g~2p!23E dkW~k21M* 2!1/2~sin2u22cos2u1!,

~25a!

es5
1

2
ms

2s0
2 , ~25b!

and

ev5gvv0g~2p!23E dkW~sin2u21cos2u1!2
1

2
mv

2 v0
2 .

~25c!

We now proceed to study the properties of nuclear ma
at zero temperature. In that limit the distribution functio
for the baryons and antibaryons are given as

sin2u25Q@m* 2e* ~kW !#; sin2u150. ~26!

The energy density after subtracting out the pure vacu
contribution then becomes

e0[e~u2 , f !2e~u250,f 50!

5eMFT1De, ~27!

with

eMFT5g~2p!23E
ukW u,kF

dkW~k21M* 2!1/21
1

2
ms

2s0
2

1gvv0rB2
1

2
mv

2 v0
2 ~28!

and
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De52g~2p!23E dkW F ~k21M* 2!1/22~k21M2!1/2

2
gss0M

~k21M2!1/2G . ~29!

The above expression for the energy density is divergen
is renormalized@7# by adding the counterterms

ect5 (
n51

4

Cns0
n . ~30!

The addition of the counterterm linear ins0 amounts to nor-
mal ordering of the scalar density in the perturbative vacu
and cancels exactly with the last term in Eq.~29! @7#. The
first two terms of the same equation correspond to the shi
the Dirac sea arising from the change in the nucleon mas
finite density whens acquires a vacuum expectation valu
and consequent divergences cancel with the counter term
Eq. ~30! with higher powers ins0 @7#. Then we have the
expression for the finite renormalized energy density

e ren5eMFT1De ren, ~31!

where

De ren52
g

16p2 FM* 4lnS M*

M D1M3~M2M* !

2
7

2
M2~M2M* !21

13

3
M ~M2M* !3

2
25

12
M ~M2M* !4G . ~32!

For a given baryon density as given by

rB5g~2p!23E dkWQ~kF2k!, ~33!

the thermodynamic potential given by Eq.~19! is now finite
and is a function ofs0 andv0 . This when minimized with
respect tos0 gives the self-consistency condition for th
effective nucleon mass

M* 5M2
gs

2

ms
2

g

~2p!3 E dkW
M*

e~k!*
Q~kF2k!1DM* ,

~34!

where

DM* 5
gs

2

ms
2

g

~2p!3 FM* 3lnS M*

M D1M2~M2M* !

2
5

2
M2~M2M* !21

11

6
M ~M2M* !3G . ~35!

We note that the self-consistency condition for the eff
tive nucleon mass as well as the energy density as obta
here through an explicit construct of a state with baryo
antibaryon condensates are identical to those obta
It

in
at

,
of

-
ed
-
ed

through summing tadpole diagrams for the baryon propa
tor in the relativistic Hartree approximation@7#.

III. ANSATZ STATE WITH BARYON-ANTIBARYON
AND s CONDENSATES

We next consider the quantum corrections due to the s
lar mesons as arising from a vacuum realignment withs
condensates. This means that thes field is no longer classi-
cal, but is now treated as a quantum field. As will be se
later, a quartic term in thes field would favor such conden
sates. Self-interactions of scalar fields with cubic and qua
terms have been considered earlier@19# in the no-sea ap-
proximation@6# as well as including the quantum correctio
arising from thes fields @1,20,21#. They may be regarded a
mediating three- and four-body interactions between
nucleons. The best fits to incompressibility in nuclear mat
single-particle spectra and properties of deformed nuclei
achieved with a negative value for the quartic coupling in
s field. However, with such a negative coupling the ener
spectrum of the theory becomes unbounded from below@22#
for larges and hence it is impossible to study excited spec
or to include vacuum polarization effects.

Including a quartic scalar self-interaction, Eq.~5b! is
modified to

Hs5
1

2
]ms]ms1

1

2
ms

2s21ls4, ~36!

with ms and l being the bare mass and coupling consta
respectively. Thes field satisfies the quantum algebra

@s~xW !,ṡ~yW !#5 id~xW2yW ). ~37!

We may expand the field operators in terms of creation
annihilation operators at timet50 as

s~xW ,0!5
1

~2p!3/2 E dkW

A2v~kW !
@a~kW !1a†~2kW !#eikW•xW,

~38a!

ṡ~xW ,0!5
i

~2p!3/2 E dkWAv~kW !

2
@2a~kW !1a†~2kW !#eikW•xW.

~38b!

In the above,v(kW ) is an arbitrary function which for free

fields is given by v(kW )5AkW21ms
2 and the perturbative

vacuum is defined corresponding to this basis throu
auvac&50. The expansions~38! and the quantum algebr
~37! yield the commutation relation for the operatorsa as

@a~kW !,a†~kW8!#5d~kW2kW8!. ~39!

As seen in the previous section a realignment of
ground state fromuvac& to uvac8& with nucleon condensate
amounts to including quantum effects. We shall adop
similar procedure now to calculate the quantum correcti
arising from thes field. We thus modify the ansatz for th
trial ground state as given by Eq.~10! to includes conden-
sates as@13#

uV&5UsUFuvac&, ~40!
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1384 56MISHRA, PANDA, SCHRAMM, REINHARDT, AND GREINER
with

Us5UII UI , ~41!

whereUi5exp(Bi
†2Bi), (i5I,II ). Explicitly the Bi are given

as

BI
†5E dkWAv~kW !

2
f s~kW !a†~kW ! ~42a!

and

BII
† 5

1

2 E dkWg~kW !a8†~kW !a8†~2kW !. ~42b!

In the above, a8(kW )5UIa(kW )UI
215a(kW )2Av(kW )/2f s(kW )

corresponds to a shifted field operator associated with
coherent state@13# and satisfies the same quantum algebra
given in Eq.~39!. Thus in this construct for the ground sta
we have two functionsf s(kW ) andg(kW ) which will be deter-
mined through minimization of energy density. Furth
since uV& contains an arbitrary number ofa8† quanta,
a8uV&Þ 0. However, we can define the basisb(kW ), b†(kW )
corresponding touV& through the Bogoliubov transformatio
as

S b~kW !

b†~2kW !
D 5UII S a8~kW !

a8†~2kW !
D UII

21

5S coshg 2sinhg

2sinhg coshg D S a8~kW !

a8†~2kW !
D . ~43!

It is easy to check thatb(kW )uV&50. Further, to preserve
translational invariancef s(kW ) has to be proportional tod(kW )
and we takef s(kW )5s0(2p)3/2d(kW ). s0 will correspond to a
classical field of the conventional approach@13#. We next
calculate the expectation value of the Hamiltonian den
for thes meson given by Eq.~36!. Using the transformations
~43! it is easy to evaluate that

^VusuV&5s0 ~44a!

but

^Vus2uV&5s0
21I , ~44b!

where

I 5
1

~2p!3 E dkW

2v~k!
~cosh2g1sinh2g!. ~44c!

Using Eqs.~36! and ~44! the energy density ofHs with
respect to the trial state becomes@13#
e
s

,

y

es[^VuHsuV&5
1

2

1

~2p!3 E dkW

2v~k!

3@k2~sinh2g1cosh2g!1v2~k!~cosh2g2sinh2g!#

1
1

2
ms

2 I 16ls0
2I 13lI 21

1

2
ms

2s0
21ls0

4 . ~45!

Extremizing the above energy density with respect to
function g(k) yields

tanh2g~k!52
6lI 16ls0

2

v~k!216lI 16ls0
2 . ~46!

It is clear from the above equation that in the absence o
quartic coupling no such condensates are favored since
condensate function vanishes forl50. Now substituting this
value ofg(k) in the expression for thes-meson energy den
sity yields

es5
1

2
ms

2s0
21ls0

41
1

2

1

~2p!3 E dkW~k21Ms
2 !1/223lI 2,

~47!

where

Ms
25ms

2112lI 112ls0
2 ~48!

with

I 5
1

~2p!3 E dkW

2

1

~kW21Ms
2 !1/2

~49!

obtained from Eq.~44c! after substituting for the condensa
function g(k) as in Eq.~46!. The expression for the ‘‘effec-
tive potential’’ es contains divergent integrals. Since our a
proximation is nonperturbatively self-consistent, the fie
dependent effective massMs is also not well defined
because of the infinities in the integralI given by Eq.~49!.
Therefore we first obtain a well-defined finite expression
Ms by renormalization. We use the renormalization p
scription of Ref.@23# and thus obtain the renormalized ma
mR and couplinglR through

mR
2

lR
5

m2

l
112I 1~L!, ~50a!

1

lR
5

1

l
112I 2~L,m!, ~50b!

whereI 1 and I 2 are the integrals

I 1~L!5
1

~2p!3 E
ukW u,L

dkW

2k
, ~51a!
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I 2~L,m!5
1

m2 E
ukW u,L

dkW

~2p!3 S 1

2k
2

1

2Ak21m2D ,

~51b!

with m as the renormalization scale andL as an ultraviolet
momentum cutoff. It may be noted here that with the use
the above renormalization prescription the effectives mass
Ms and the energy density ultimately become independ
of L and stay finite in the limitL→`. Using Eqs.~50a! and
~50b! in Eq. ~48!, we have the gap equation forMs

2 in terms
of the renormalized parameters as

Ms
25mR

2112lRs0
2112lRI f~Ms!, ~52!

where

I f~Ms!5
Ms

2

16p2 lnS Ms
2

m2 D . ~53!

Then using the above equations we simplify Eq.~47! to ob-
tain the energy density for thes in terms ofs0 as

es53lRS s0
21

mR
2

12lR
D 2

1
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G23lRI f
2

22ls0
4 . ~54!

We might note here that the gap equation given by Eq.~52!
is identical to that obtained through resumming the daisy
superdaisy graphs@16# and the effective potential include
higher-order corrections from the meson fields. This is
improvement over the one-loop effective potential calcula
earlier @21#. The expression for the energy density given
Eq. ~54! is in terms of the renormalizeds massmR and the
renormalized couplinglR except for the last term which i
still in terms of the bare coupling constantl and did not get
renormalized because of the structure of the gap equa
@16#. However, from the renormalization condition~50b! it is
easy to see that whenlR is kept fixed, as the ultraviole
cutoff L in Eq. ~51b! goes to infinity, the bare coupling
l→02 . Therefore the last term in Eq.~54! will be neglected
in the numerical calculations.

After subtracting the vacuum contribution, we get

Des5es2es~s050!

5
1

2
mR

2s0
213lRs0

41
Ms

4

64p2 F lnS Ms
2

m2 D 2
1

2G23lRI f
2

2
Ms,0

4

64p2 F lnS Ms,0
2

m2 D 2
1

2G13lRI f 0
2 , ~55!

whereMs,0 andI f 0 are the expressions as given by Eqs.~52!
and ~53! with s050.

In the limit of the couplinglR50, one can see that Eq
~55! reduces to Eq.~25b! as it should. Also, we note that th
sign of lR must be chosen to be positive, because otherw
the energy density would become unbounded from be
with vacuum fluctuations@3,21,22#.
f

nt

d

n
d

on

e
w

The expectation value for the energy density after s
tracting out the vacuum contribution as given by Eq.~27!,
now with s condensates is modified to

e05e0
finite1De, ~56!

where

e0
finite5g~2p!23E

ukW u,kF

dkW~k21M* 2!1/21gvv0rB

2
1

2
mv

2 v0
21Des , ~57!

with Des given through Eq.~55! andDe is the divergent part
of the energy density given by Eq.~29!. We renormalize by
adding the same counter terms as given by Eq.~30! so that as
earlier the renormalized mass and the renormalized qua
coupling remain unchanged@1#. This yields the expression
for the energy density

e ren5e0
finite1De ren, ~58!

with De ren given by Eq.~32!. As earlier the energy density i
to be minimized with respect tos0 to obtain the optimized
value for s0 , thus determining the effective massM* in a
self-consistent manner.

The energy density from thes field as given by Eq.~55!
is still in terms of the renormalization scalem which is arbi-
trary. We choose this to be equal to the renormalizeds mass
mR in doing the numerical calculations. This is becau
changingm would mean changing the quartic couplinglR ,
and lR here enters as a parameter to be chosen to give
incompressibility in the correct range.

For a given baryon densityrB, the binding energy for
nuclear matter is

EB5e ren/rB2M . ~59!

The parametersgs , gv, andlR are fitted so as to describ
the ground-state properties of nuclear matter correctly.
discuss the results in the next section.

IV. RESULTS AND DISCUSSIONS

We now proceed with the numerical calculations to stu
the nuclear matter properties at zero temperature. We
the nucleon andv-meson masses to be their experimen
values as 939 and 783 MeV. We first calculate the bind
energy per nucleon as given in Eq.~59! and fit the scalar and
vector couplingsgs and gv to get the correct saturatio
properties of nuclear matter. This involves first minimizin
the energy density in Eq.~58! with respect tos0 to get the
optimized scalar field ground state expectation valuesmin .
This procedure also naturally includes obtaining the
mediums-meson massMs through solving the gap equatio
~52! in a self-consistent manner. Obtaining the optimiz
smin amounts to getting the effective nucleon ma
M* 5M1gssmin . We fix the meson couplings from th
saturation properties of the nuclear matter for given ren
malized s mass and couplingmR and lR . Taking
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mR5520 MeV, the values ofgs and gv are 7.34 and 8.21
for lR51.8, and are 6.67 and 7.08 forlR55, respectively.
Using these values, we calculate the binding energy
nuclear matter as a function of the Fermi momentum a
plot it in Fig. 1. In the same figure we also plot the results
the relativistic Hartree and for the no-sea approximati
Clearly, including baryon ands-meson quantum correction
leads to a softer equation of state and the softening incre
for higher values oflR . The incompressibility of the nuclea
matter is given as@24#

FIG. 1. The binding energy for nuclear matter as a function
Fermi momentumkF corresponding to the no-sea and the relativ
tic Hartree approximations and the approach including quan
corrections from baryon ands meson given by Eq.~59!. It is seen
that the equation of state is softer with such quantum correctio

FIG. 2. The effective nucleon mass for nuclear matter as a fu
tion of the Fermi momentum,kF .
r
d
r
.

es

K5kF
2 ]2e

]kF
2 ~60!

evaluated at the saturation Fermi momentum. The value oK
is found to be 401 MeV forlR51.8 and 329 MeV for
lR55. These are smaller than the mean-field result of 5
MeV @4#, as well as that of relativistic Hartree of 450 Me
@7# and are similar to those obtained in Ref.@21# containing
cubic and quartic self-interaction of thes meson.

In Fig. 2 we plot the effective nucleon massM*
5M1gssmin as a function of Fermi momentum withsmin
obtained from the minimization of the energy density in
self-consistent manner. At the saturation density

f
-
m

.

c-

FIG. 3. The scalar potentialUS ~negative values! and vector
potential UV ~positive values! for nuclear matter as functions o
Fermi momentumkF .

FIG. 4. The in-mediums-meson massMs of Eq. ~52! as a
function of density, which is seen to increase with density. Ho
ever, the change is seen to be rather small.
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kF51.42 fm21, we get M* 50.752M and 0.815M for
lR51.8 andlR55, respectively. These values may be co
pared with the results ofM* 50.56M in the no-sea approxi
mation and of 0.72M in the relativistic Hartree.

In Fig. 3 we plot the vector and the scalar potentials
functions ofkF for s self-couplinglR51.8 and 5. At satu-
ration density the scalar and vector contributions
US[gssmin52232.7 MeV and UV[gvv05163.4 MeV
for lR51.8 and are2173.14 and 107.74 MeV forlR55,
respectively. These give rise to the nucleon poten
(US1UV) of 269.3 and265.4 MeV and an antinucleon
potential (US2UV) of 2396.1 and 2280.9 MeV for
lR51.8 and 5. Clearly the inclusion of the quantum corre
tions reduces the antinucleon potential as compared to
the relativistic Hartree (2450 MeV) @7# and the no-sea re
sults (2746 MeV) @4#.

In Fig. 4 we plot the in-mediums-meson massMs of Eq.
~52! as a function of baryon density forlR51.8 and 5.Ms

increases with density aslR is positive and the magnitude o
smin increases with density too. However, the change inMs

is rather small.
In Fig. 5 we plot the incompressibilityK as a function of

the quartic couplinglR for different values ofmR , the renor-
malizeds mass in vacuum. The value ofK decreases with
increase inlR similar to the results obtained in Ref.@21#. In
Fig. 6 we plot the effective nucleon mass versus thes self-
coupling for various values ofmR . The value ofM* in-
creases withlR , which is a reflection of the diminishing
nucleon-s coupling strength for larger values of the quar
self-interaction.

To summarize, we have used a nonperturbative appro
to include quantum effects in nuclear matter using the fram
work of QHD. Instead of going through a loop expansi
and summing over an infinite series of Feynman diagra
we have included the quantum corrections through a real
ment of the ground state with baryon as well as meson c
densates. It is interesting to note that inclusion of bary
antibaryon condensates with the particular ansatz determ
through minimization of the thermodynamic potential yiel
the same results as obtained in the relativistic Hartree
proximation. This results in a softer equation of state as co
pared to the no-sea approximation. The calculation of sc

FIG. 5. The incompressibilityK versus the quartic couplinglR

for various values ofmR , which is seen to decrease withlR . The
values ofK are higher for larger values of thes mass.
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meson quantum corrections as done here in a self-consi
manner includes multiloop effects. This leads to a furth
softening of the equation of state. The value for the inco
pressibility of nuclear matter is within the range of 200–4
MeV @25#. It is known that most of the parameter sets whi
explain the ground-state properties of nuclear matter and
nite nuclei quite well are with a negative quartic couplin
But the energy spectrum in such a case is unbounded f
below @22# for larges thus making it impossible to include
vacuum polarization effects. We have included the quant
effects with a quartic self-interaction throughs condensates
taking the coupling to be positive. We have also calcula
the effective mass of thes field as modified by the quantum
corrections from baryon ands fields. The effectives mass is
seen to increase with density.

We have also looked at the behavior of the incompre
ibility as a function of the couplinglR for various values of
s mass, which is seen to decrease with the coupling. Fina
we have looked at the effect of thes quartic coupling on the
effective nucleon mass which grows with the coupling. Ge
erally, higher values of the quartic term in the potential
the s meson tend to reduce the large meson fields and
the strong relativistic effects in the nucleon sector. Clea
the approximation here lies in the specific ansatz for
ground-state structure. However, a systematic inclusion
more general condensates than the pairing one as used
might be an improvement over the present one. The met
can also be generalized to finite temperature as well a
finite nuclei, e.g., using the local density approximatio
Work in this direction is in progress.
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FIG. 6. The effective nucleon mass as a function oflR for
different values ofmR . It is seen to decrease with increase in t
coupling.
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