provided by Hochschulschriftenserver - Universitat Frankfurt am Main

PHYSICAL REVIEW C VOLUME 56, NUMBER 3 SEPTEMBER 1997

Structure of the vacuum in nuclear matter: A nonperturbative approach
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We compute the vacuum polarization correction to the binding energy of nuclear matter in the Walecka
model using a nonperturbative approach. We first study such a contribution as arising from a ground-state
structure with baryon-antibaryon condensates. This yields the same results as obtained through the relativistic
Hartree approximation of summing tadpole diagrams for the baryon propagator. Such a vacuum is then
generalized to include quantum effects from meson fields through scalar-meson condensates which amounts to
summing over a class of multiloop diagrams. The method is applied to study properties of nuclear matter and
leads to a softer equation of state giving a lower value of the incompressibility than would be reached without
guantum effects. The density-dependent effectiveass is also calculated including such vacuum polarization
effects.[S0556-281®7)02509-7

PACS numbegs): 21.65+f, 21.30—x

[. INTRODUCTION to be developed to consider nuclear many-body problems.
The present work is a step in that direction including vacuum
Quantum hadrodynamid®HD) is a general framework polarization effects.

for the nuclear many-body problefda—3]. It is a renormal- The approximation scheme here uses a squeezed coherent
izable relativistic quantum field theory using hadronic de-type of construction for the ground stafé2,13 which
grees of freedom and has quite successfully described themounts to an explicit vacuum realignment. The input here is
properties of nuclear matter and finite nuclei. In the Waleckaqual-time quantum algebra for the field operators with a
model(QHD-I) with nucleons interacting with scalés) and  variational ansatz for the vacuum structure and does not use
vector (w) mesons, it has been shown in the mean-field apany perturbative expansion or Feynman diagrams. We have
proximation that the saturation density and binding energy ogarlier seen that this correctly yields the results of the Gross-
nuclear matter may be fitted by adjusting the scalar and veqgeyey mode[14] as obtained by summing an infinite series
tor couplings4]. This was first done by neglecting the Dirac ot gne-loop diagrams. We have also seen that it reproduces
sea_and is called the no-sea apprqximation. In this approXxig,q gap equation in an effective QCD Hamiltonigk§] as
matl_on, sev_eral groups have investigated Fh_e effects _Of SCaI‘?ertained through the solution of the Schwinger-Dyson equa-
self-interactions in nuclear matt¢s] and finite nuclei[6] tions for the effective quark propagator. We here apply such

using a mean-field approach. . a nonperturbative method to study the quantum vacuum in
To include the sea effects, one does a self-consistent sum

) . nuclear matter.
of tadpole diagrams for the baryon propagdtf. This de- )
fines the relativistic Hartree approximation. There have also We organize the paper as follows. In Sec. II, we study the

been calculations including corrections to the binding energy2cutm polarization effects in nuclear matter as simulated
up to two-loops[8], which are seen to be rather large asthrough a vacuum realignment Wlth l_)aryon-an_nbaryon con-
compared to the one-loop results. However, it is seen thdi€nsates. The condensate function is determined through a
using phenomenological monopole form factors to accounfninimization of the thermodynamic potential. The properties
for the composite nature of the nucleons, such contribution i§f nuclear matter as arising from such a vacuum are then
reduced substantiallj9] so that it is smaller than the one- Studied and are seen to become identical to those obtained
loop result. Recently, form factors have been introduced as #irough the relativistic Hartree approximation. In Sec. Ill, we
cure to the unphysical modes, the so called Landau polegeneralize the vacuum state to includtecondensates also,
[10], which one encounters while calculating the mesorwhich are favored with a quartic term in thefield in the
propagator as modified by the interacting baryon propagatdragrangian. The effective potential as obtained here includes
of the relativistic Hartree approximation. There have beemultiloop effects and agrees with that obtained through the
also attempts to calculate the form factors by vertex correceomposite operator formalisfii6]. The quartic coupling is
tions[11]. However, without inclusion of such form factors chosen to be positive, which is necessary to consider vacuum
the mean-field theory is not stable against a perturbative loopolarization effects from ther field. We also calculate the
expansion. This might be because the couplings involvedffective c mass arising through such quantum corrections as
here are too largéof order of 10 and the theory is not a function of density. The coupling here is chosen to give the
asymptotically free. Hence nonperturbative techniques needalue for the incompressibility of nuclear matter in the cor-

rect range. Finally, in Sec. IV, we summarize the results

obtained through our nonperturbative approach and present

*Electronic address: mishra@th.physik.uni-frankfurt.de an outlook.
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II. VACUUM WITH BARYON AND ANTIBARYON )((|Z)
CONDENSATES cos -
We start with the Lagrangian density for the linear Wa- U, (k)= @ Upr s
lecka model given as G-k sinXZ
— 1
L=(iy*d,—M-g,0-0,70,) )+ 5(9"0'(9“0' . )((lZ)
—o-k sin—2
1 1 1 o) —
— ZMm2ol+ S ml ot — — MY Vo(—k)= - Uls- (8)
S Mo+ oMo, — 7o o,,, (1) Y(K)
cos——

with
For free massive fields cg)=M/e(K) and siny(k)=|K/e(K),
= Our ™ Iy @ with (k)= ViZ+ M2
The above are consistent with the equal-time anticommu-

In the abovey, o, andw, are the fields for the nucleow, tator algebra for the operatoesand@ as given by

and v mesons with massdd, m,, andm,, respectively.

We use the mean-field approximation for the meson fields SR P > e~ e =t
and retain the quantum nature of the fermion figlt§. This [eir (K. Cis(K) ] = drs8(k=K") =[Cyr (k). Cys (k)] - 9
amounts to taking meson fields as constant classical fields ©)

with translational invariance for nuclear matter. Thus wepe perturbative vacuum, salad, is defined through
hall repl - —t oy ’
shall replace ¢, (K)|vag=0 andc . (k)|vac=0.
_ To include the vacuum-polarization effects, we shall now
+0—(9,0)=0,00, 3 . . ) ; '
g (909)=9,00 33 consider a trial state with baryon-antibaryon condensates.

gwwﬂ—><9wwﬂ)zgwwﬂéﬂozgwwo, (3b) We thus explicitly take the ansatz for the above state as

where(- - -) denotes the expectation value in nuclear matter |vac’):ex;{f dkf (k)¢ (K)a,sCs( — k) — H.c.||vac)

and we have retained the zeroth component for the vector

field to have a nonzero expectation value. =Ug|vad. (10)
The Hamiltonian density can then be written as

Herea,s=ul (6-k)v,s andf(K) is a trial function associated

H=Hn+HotH,, ) with baryon-antibaryon condensates. We note that with the
with above transformation the operators correspondinfyaa’)
are related to the operators correspondingvax) through
t e — the Bogoliubov transformation
Hy=¢' (—ia-V+BM)y+g,0odi, (53)
. d, (K) ) ( cof(k) —a-ksinf(K)\[ ¢ (K )
Ho=5 M50, (5b) d(-k)) \G-ksinf(k)  cos(K) (=R
11

1,5, for the nucleon.
Ho=gowod = 2Mo®0 (50 We then use the method of thermofield dynamiit8]
developed by Umezawa to construct the ground state for
The equal-time quantization condition for the nucleons isnuclear matter. We generalize the state with baryon-
given as antibaryon condensates as given by Ef) to finite tem-
perature and density 4%3]

[F(B))=U(B)|vac)=U(B)Ug|vag. 12

The temperature-dependent unitary operdd@B) is given

[a(R,0), 5T, = Sop8(X—Y), (6)

where« and g3 refer to the spin indices. We may now write
down the field expansion for the nucleon fiefdht timet=0

as given by[17] as[18]
1 _ o U(B)=exdB'(8)~B(B)], (13
W= s [ [0 R0 (R4 Vo~ RIB Rk,
@)
with ¢, andC;s as the baryon annihilation and antibaryon BT(ﬁ):j dk[ 0_(k,8)d] (k)] (—K)

creation operators with spins and s, respectively. In the - _
above,U, andV, are given by +6.(k,B)d; (k) d (—k)]. (14
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The underlined operators are the operators corresponding tmntributions to the entropy density fromand » mesons,
the doubling of the Hilbert space that arises in thermofieldrespectively. It may be noted here that these are independent

dynamics method. We shall determine the condensate fungf the functionsf (k), 6. (k,8) associated with the nucleons

tion f(k), and the functionsf_(k,B8) and 6. (k,3) of the

and hence are not relevant for the nuclear matter properties at

thermal vacuum through minimization of the thermodynamiczero temperature. Extremizing the thermodynamic potential

poterjtial..To evaluate the expectation value of the energy) with respect to the condensate functifk) and the func-
density with respect to the thermal vacuum, we shall use thgons ¢_. yields

formula
Fran g (o o L % —ik- (-4
<%(X)l//a(y)>/s—(27)3 f (A _(k,B)) sy~ X Vdk,
(15
where
A_(k,B)= %{(cosﬂ+sin2,>—[y°cos<x<12>—2f(E»
+a-k sin(y(K)—2 f(k))](co26, —sir?a_)}.
(16)
We now proceed to calculate the energy density
e=(H)p=ent €, T €,, 17)
with

ds00
e(k)

___r
€N (27T)3

f dﬁ[ e(k)cos2f (k) — [M cos2f(Kk)

+|I2|sin2f(IZ)]](cos°-0+—sin20), (18a
e,,:%miag : (18b)

and

. 1
ew:gwwoy(ZTr)*?’f dk(cog6, +sirfd_)— sm2wj.

2
(180
The thermodynamic potential is then given as
1
O=e— - S—pups, (19
B
with the entropy density
S=— 7(277)—3f dK[sir?6_ In(sin?6_)
+cog0_ In(cogh_)+sirfd, In(sirfd.)
+cog6, In(cogh,)]+S,+S, (20
and the baryon density
pB:y(zwﬁf dk(co26, +sirta_). (21)

t SN ga'0-0||2|
an2f(k)——6(k)2+Mg o0 (22
and
infg. = ! 23
R 1 T e A

with €* (k) =(k®+M*?)Y2 and u* = u—g,wo as the effec-
tive energy density and effective chemical potential, where
the effective nucleon mass M* =M +g,0y.

Then the expression for the energy density becomes

e=ente,te,, (24
with

en= y(2w>*3f AR+ M*2)Y2(sir?g_ — 020, ),
(253

1
evzim(z,a'g, (25b
and

. 1
ewzgwwo'y(Zﬂ')*?’f dk(sirf9_+cog6,)— Emiwg.
(250

We now proceed to study the properties of nuclear matter
at zero temperature. In that limit the distribution functions
for the baryons and antibaryons are given as

Sit6_=0O[u* —e*(K)]; sifo,=0. (26)

The energy density after subtracting out the pure vacuum
contribution then becomes

e=¢€(0_,f )—e(6_=0,=0)
:GMFT‘I'AG, (27)
with
-3 (12 2\1/2 1 2 2
EMET™ ’}/(277) N dk(k +M* ) + _mO_(TO
K| <kg 2

+ LI 28
JuwopPB 2mww0 ( )

In the above,y is the spin isospin degeneracy factor and is

equal to 4 for nuclear matter. Furthe$, and S, are the

and
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through summing tadpole diagrams for the baryon propaga-

Ae=~— 7(277)_3f dk| (k*+M*2)Y2— (k2+M?)H2 tor in the relativistic Hartree approximatid].
g,00M lll. ANSATZ STATE WITH BARYON-ANTIBARYON
N (29 AND o CONDENSATES

The above expression for the energy density is divergent. Ilta rvxweeggr):ts C;)SnS;?ieszr;tgef%ﬁn;uyaggaﬁcgggﬁg%ﬁeﬁ t\?;tr?ca-
is renormalized 7 ing th nterterm . o :
s renormalized7] by adding the counterterms condensates. This means that théeld is no longer classi-

4 cal, but is now treated as a quantum field. As will be seen
€= 2 Cnob. (300 later, a quartic term in the field wpuld fayor suc;h conden- .
n=1 sates. Self-interactions of scalar fields with cubic and quartic
N ) ) terms have been considered earli#8] in the no-sea ap-
The addition of the counterterm linear iy amounts to nor-  proximation[6] as well as including the quantum corrections
mal ordering of the scalar density in the perturbative vacuunyrising from theo fields[1,20,21. They may be regarded as
and cancels exactly with the last term in ER9) [7]. The  mediating three- and four-body interactions between the
first two terms of the same equation correspond to the shift iy cleons. The best fits to incompressibility in nuclear matter,
the Dirac sea arising from the change in the nucleon mass afngle-particle spectra and properties of deformed nuclei are
finite density wheno acquires a vacuum expectation value, achieved with a negative value for the quartic coupling in the
and consequent divergences cancel with the counter terms gffield. However, with such a negative coupling the energy
Eqg. (30) with higher powers ino [7]. Then we have the gspectrum of the theory becomes unbounded from bgR®}

expression for the finite renormalized energy density for largeo and hence it is impossible to study excited spectra
or to include vacuum polarization effects.
€ren— EmFT+ A €ren, 3D Including a quartic scalar self-interaction, E(pb) is
modified to
where
1 1 2 2 4
v vl M* 3 . HU:§(9MO'(9MO'+ Emga +No”, (36)
Aeren:_EZM |nv+M (M—M )
7 13 with m, and \ being the bare mass and coupling constant,
— ZM3(M—M*)2+ —M(M—M*)3 respectively. Ther field satisfies the quantum algebra
2 3

[o(X),0(§)]=18(X~Y). (37

. 32 we may expand the field operators in terms of creation and
annihilation operators at time=0 as

25|\/| M—M*)4

For a given baryon density as given by

2 0)= L f dk Q)+ af(— k) 1elk
O-(X! )_ (277_)3/2 \/Zw(lz)[a( )+a ( )]e ’

pB:wzm*Sf Ak (ke —K), (39 .

the thermodynamic potential given by E4.9) is now finite i w(K) i
and is a function oty and wg. This when minimized with  4(%,0)= ——=p J' dk\/ —2 [—ak)+al(— k)%
respect too gives the self-consistency condition for the (27) 2

effective nucleon mass (38b

g2 y M* In the above,w(E) is an arbitrary function which for free
M*:M_m_;(wa‘ f dke(k)* O(ke—k)+AM*, fields is given by w(K)=k?*+mZ and the perturbative
c (34) vacuum is defined corresponding to this basis through
alvac=0. The expansion$38) and the quantum algebra

where (37) yield the commutation relation for the operatarsas
9% v M* [a(k).a'(k")]=8(k=K"). (39
AM* = — ——— M*Sln(— +MA(M—M*) _ _ _ _
my, (2) M As seen in the previous section a realignment of the

ground state fromvag to |vac') with nucleon condensates
. (35 amounts to including quantum effects. We shall adopt a
similar procedure now to calculate the quantum corrections

) . arising from theo field. We thus modify the ansatz for the
We note that the self-consistency condition for the effecyyig, ground state as given by E€L0) to includeo conden-
tive nucleon mass as well as the energy density as obtainegag a$13]

here through an explicit construct of a state with baryon-
antibaryon condensates are identical to those obtained |Q)=U, Ug|vag, (40

5 11
—EMZ(M—M*)2+€M(M—M*)3
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QA0 =5 Z 53 f 20(K)
Us,=U; Uy, (41
X [k?(sinh2g+ cosh®)) + w?(k)(cosh?)—sinh2y)]
whereUizexp(BiT—Bi), (i=1,). Explicitly the B; are given

1 1
as +§m§|+6>\a§|+3>\|2+Emf,agﬂag. (45)
. . (k) . . Extremizing the above energy density with respect to the
B, _f dky — fo(k)a'(k) (428 functiong(k) yields
and ONEIIN
tanhy(k)=— (46)

w(k)?+ 6Nl +6No5"
1
t_— Carb\a’Tiiartr L
Bi=3 f dkg(kja’ (k)a"(=k). (42D it s clear from the above equation that in the absence of a
quartic coupling no such condensates are favored since the
condensate function vanishes for 0. Now substituting this

In the above,a’(k)=U,a(k)U; *=a(k)— Vw(k)/2f,(K) lue ofa(k) in th ion for the- den-
corresponds to a shifted field operator associated with th\éﬁyu;;dgs( ) in the expression for the-meson energy den

coherent statgl3] and satisfies the same quantum algebra as
given in Eqg.(39). Thus in this construct for the ground state

we have two function,,(K) andg(K) which will be deter- _Ly2 2.\ o 2 1 f k(4 M2) 12— 3) 2

mined through minimization of energy density. Further, 2 2
since |Q)) contains an arbitrary number ai’'’ quanta, (47)
a'|Q)# 0. However, we can define the basiék), b'(k)
corresponding tdQ) through the Bogoliubov transformation where
as
M2=m2+12\I+ 12\ o3 (48)
b(k) a' (k) .
( *)=u.|( L Juyt with
b¥(—k) a'"(—k)
( costy —sinhg|[ a’(k) 3 1 dk 1
= . L. |= — 49
—sinhg  cosly /| a'T(—K) (2m)3 2 (lzerMlzf)l/z 49

It is easy to check thab(k)|Q)=0. Further, to preserve obtained from Eq(440 after substituting for the condensate
translational invariancé, (k) has to be proportional t6(k)  functiong(k) as in Eq.(46). The expression for the “effec-
and we takef ,(K) = o(27)328(K). o will correspond to a tive potential” €, contains divergent integrals. Since our ap-
classical fielg of theoconventional gpproaﬁftB]. We next Proximation is nonperturbatively self-consistent, the field-
calculate the expectation value of the Hamiltonian densinfieéPendent effective massl, is also not well defined

for the o meson given by Eq36). Using the transformations Pecause of the infinities in the integialgiven by Eq.(49).
(43) it is easy to evaluate that Therefore we first obtain a well-defined finite expression for

M, by renormalization. We use the renormalization pre-
scription of Ref[23] and thus obtain the renormalized mass

(Q|a|Q)=09 (448 . and coupling\g through
but 2 m2
= H12a(), (509
(Q|a?|Q)=03+1, (44h) R
1 1
where —=—+12,(A,un), (50b)
AR A\
| = ! J dk h21+sinh 44 wherel; andl, are the integrals
_W W(COS 3 +sinh2g). (440 1 2
Using Egs.(36) and (44) the energy density of{, with 1 (A)= 1 f ﬂ‘ (518
respect to the trial state beconfds] ! (2m)° Jig<a 2k’
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LA )= 1J dk [ 1 1
2 w k<A (2m)* | 2k 2Vk%+ u?

(51b

with w as the renormalization scale andas an ultraviolet

1385

The expectation value for the energy density after sub-
tracting out the vacuum contribution as given by E2j7),
now with o condensates is modified to

momentum cutoff. It may be noted here that with the use O(Nhere

the above renormalization prescription the effectivenass

M, and the energy density ultimately become independent

of A and stay finite in the limi\ —<0. Using Eqs(509 and
(50b) in Eq. (48), we have the gap equation fM(Z, in terms
of the renormalized parameters as

M2Z=ma+12\goa+12\gl (M), (52)
where
M2 (M2
1{(M,)= ﬁln(ﬁ) (53

Then using the above equations we simplify Ej7) to ob-
tain the energy density for the in terms ofo as

M2\ 1 )
In 7 —E _3)\R|f

(54)

2
Mg

12x

2 Mi

2
gqt+ +
0 6472

€= 3)\R

—2)\0'3.

We might note here that the gap equation given by (B8)

is identical to that obtained through resumming the daisy an
superdaisy graphgl6] and the effective potential includes
higher-order corrections from the meson fields. This is a
improvement over the one-loop effective potential calculate
earlier[21]. The expression for the energy density given by

Eq. (54) is in terms of the renormalize@ massmg and the

renormalized coupling.g except for the last term which is
still in terms of the bare coupling constani@and did not get
renormalized because of the structure of the gap equation

[16]. However, from the renormalization conditi@®Oby) it is

easy to see that whekg is kept fixed, as the ultraviolet
cutoff A in Eqg. (51b) goes to infinity, the bare coupling

A—0_. Therefore the last term in E¢G4) will be neglected
in the numerical calculations.
After subtracting the vacuum contribution, we get

AEU': €6 6(,.(0'0: 0)

4
g

= EmZRO'g‘{‘ 37\R0'é+ W

M2\ 1 )
In 7 —E _3)\R|f
M3.o

M2,
~ a2 M 2

1 2
7 +3)\R|fo,

3 (59

whereM,, g andl ¢g are the expressions as given by E&R)
and (53) with o¢=0.

€= fgnite+ Ae, (56)
Egnite: 7(277)7?)[” d|2(k2+ M*2)1’2+gwwopg
Ikl<ke
1 2 2
— _mwwo-l-AEU, (57)

2

with A e, given through Eq(55) andAe is the divergent part
of the energy density given by EQR9). We renormalize by
adding the same counter terms as given by(B9). so that as
earlier the renormalized mass and the renormalized quartic
coupling remain unchangdd]. This yields the expression
for the energy density
€ren™ egn|te+ A€ren, (59)

with A €,o, given by Eq.(32). As earlier the energy density is
to be minimized with respect to, to obtain the optimized
value for o, thus determining the effective mabt* in a
self-consistent manner.

The energy density from the field as given by Eq(55)
is still in terms of the renormalization scglewhich is arbi-

a;]ary. We choose this to be equal to the renormalizedass

r In doing the numerical calculations. This is because
changingu would mean changing the quartic coupling,

;énd AR here enters as a parameter to be chosen to give the

ncompressibility in the correct range.

For a given baryon densityg, the binding energy for
nuclear matter is
EB:Eren/PB_M- (59)
The parameterg,, g,,, and\ are fitted so as to describe

the ground-state properties of nuclear matter correctly. We
discuss the results in the next section.

IV. RESULTS AND DISCUSSIONS

We now proceed with the numerical calculations to study
the nuclear matter properties at zero temperature. We take
the nucleon andv-meson masses to be their experimental
values as 939 and 783 MeV. We first calculate the binding
energy per nucleon as given in E§9) and fit the scalar and
vector couplingsg, and g, to get the correct saturation
properties of nuclear matter. This involves first minimizing
the energy density in Eq58) with respect too to get the
optimized scalar field ground state expectation vadyg, .
This procedure also naturally includes obtaining the in-
mediumo-meson mas# , through solving the gap equation

In the limit of the coupling\g=0, one can see that Eq. (52) in a self-consistent manner. Obtaining the optimized
(55) reduces to Eq(25b) as it should. Also, we note that the o, amounts to getting the effective nucleon mass
sign of \g must be chosen to be positive, because otherwist!* =M +g, o, We fix the meson couplings from the
the energy density would become unbounded from belovsaturation properties of the nuclear matter for given renor-

with vacuum fluctuation$3,21,29.

malized ¢ mass and couplingmg and Ag. Taking
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60 T 800 .
—— No-sea approx. —— No-sea approx.
-—-- Relativistic Hartree approx. -—-- Relativistic Hartree approx.
------ With baryon and o- quantum cort. (Ag=1.8) ------ With baryon and o- quantum corr.(Ag=1.8}
- = With baryon and o- quantum corr. (Ag=5.0) 600 [ — — with baryon and o- quantum cort.(Ag=5.0) /,/'-
40 400 ¢
>
(%)
=S
ﬁ 200
o
2 ]
= 20°F ‘?‘6 0
w 2
& <
=
S -200
g
=
&
U] == -400 -
-600
220 L L L n -800 L L ) L
0.6 0.9 1.2 L5 18 2.1 0.6 0.9 12 15 1.8 2.1

ke (fm™) ke (Fm™)

FIG. 1. The binding energy for nuclear matter as a function of FIG. 3. The scalar potentidls (negative valugsand vector
Fermi momentunkg corresponding to the no-sea and the relativis- potential Uy (positive values for nuclear matter as functions of
tic Hartree approximations and the approach including quantunfFermi momentunke .
corrections from baryon anat meson given by Eq59). It is seen
that the equation of state is softer with such quantum corrections. e

2
K=kg s (60)
F
mg=520 MeV, the values of, andg, are 7.34 and 8.21

for A\g=1.8, and are 6.67 and 7.08 fag=>5, respectively. eyaluated at the saturation Fermi momentum. The value of

Using these values, we calculate the binding energy fofs found to be 401 MeV forng=1.8 and 329 MeV for

nuclear matter as a function of the Fermi momentum and,.=5. These are smaller than the mean-field result of 545

plotitin Fig. 1. In the same figure we also plot the results forMeV [4], as well as that of relativistic Hartree of 450 MeV

the relativistic Hartree and for the no-sea approximation[7] and are similar to those obtained in REF1] containing

Clearly, including baryon and-meson quantum corrections cubic and quartic self-interaction of themeson.

leads to a softer equation of state and the softening increasesIn Fig. 2 we plot the effective nucleon madd*

for higher values ok . The incompressibility of the nuclear =M +g,0m,» &8s a function of Fermi momentum wit,;,

matter is given a§24] obtained from the minimization of the energy density in a
self-consistent manner. At the saturation density of

" 600
—— No-sea approx. —— For mp=520 MeV, Az = 1.8
-—+- Relativistic Hartree approx. -+ For mp=520 MeV, Mg = 5.0
""" With baryon and o- quantum corr.(Ag=1.8)
— — With baryon and o- quantum cort.(Ag=5.0)
580

% 560 |
= s
& [
=4 =
540
520
0.0 0.1 0.2 0.3 04
00 ‘ ‘ . .
0.6 0.9 12 15 1.8 2.1 3
pp ()
kp (fm')

FIG. 4. The in-mediumo-meson masdM , of Eq. (52) as a
FIG. 2. The effective nucleon mass for nuclear matter as a funcfunction of density, which is seen to increase with density. How-
tion of the Fermi momentunk . ever, the change is seen to be rather small.
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FIG. 5. The incompressibilitK versus the quartic couplings FIG. 6. The effective nucleon mass as a function\gf for
for various values ofng, which is seen to decrease wikfk. The gifferent values oimg. It is seen to decrease with increase in the
values ofK are higher for larger values of themass. coupling.

ke=1.42fm*, we get M*=0.75M and 0.8181 for  meson quantum corrections as done here in a self-consistent
Ar=138 andig=>5, respectively. These values may be Com-manner includes multiloop effects. This leads to a further
pared with the results d1* =0.56M in the no-sea approxi-  goftening of the equation of state. The value for the incom-
mation and of 0.7® in the relativistic Hartree. , pressibility of nuclear matter is within the range of 200—400
In Fig. 3 we plot the vector and the scalar potentials aey [25]. It is known that most of the parameter sets which
fun_ct|ons Oﬂ.(F for o self-coupling r= 1.8 and 5 At_ satu- explain the ground-state properties of nuclear matter and fi-
ra“f” density the scalar and vector contributions Aite nuclei quite well are with a negative quartic coupling.
Us=0,0min=—232.7 MeV ~and Uy=g,wo=163.4 MeV g the energy spectrum in such a case is unbounded from
for \r=1.8 and are- 17_3.14.and 107.74 MeV fokg=5, ) Eelow[zz] for large o thus making it impossible to include
respectively. These give rise to the nucleon potential,,q,m polarization effects. We have included the quantum
(Ust+Uy) of —69.3 and—65.4 MeV and an antinucleon  g¢ecis with a quartic self-interaction throughcondensates
potential Us—Uy) of —396.1 and —280.9 MeV for  5ying the coupling to be positive. We have also calculated
Agr=1.8 and 5. Clearly the inclusion of the quantum COrreCq effective mass of the field as modified by the quantum
tions reduces the antinucleon potential as compared to bottyrections from baryon and fields. The effectiver mass is
the relativistic Hartree £ 450 MeV) [7] and the no-sea re- geqen to increase with density.
sults (—746 MeV) [4]. . We have also looked at the behavior of the incompress-
In Fig. 4 we plot the in-mediuny-meson mas#l, of EQ.  jpility as a function of the coupling g for various values of
(52) as a function of baryon density farr=1.8 and SM,  ; mass, which is seen to decrease with the coupling. Finally,
increases with density as; is positive and the magnitude of e have looked at the effect of thequartic coupling on the
omin Increases with density too. However, the chang®ip  effective nucleon mass which grows with the coupling. Gen-
is rather small. _ o _ erally, higher values of the quartic term in the potential of
In Fig. 5 we plot the incompressibilit{ as a function of  the ¢ meson tend to reduce the large meson fields and thus
the quartic coupling.g for different values ofng, the renor-  the strong relativistic effects in the nucleon sector. Clearly,
malized o mass in vacuum. The value &f decreases with the approximation here lies in the specific ansatz for the
increase in\ similar to the results obtained in R¢21]. In  ground-state structure. However, a systematic inclusion of
Fig. 6 we plot the effective nucleon mass versusdteelf-  more general condensates than the pairing one as used here
coupling for various values ofng. The value ofM* in-  mjight be an improvement over the present one. The method
creases with\r, which is a reflection of the diminishing can also be generalized to finite temperature as well as to
nucleone coupling strength for larger values of the quartic finite nuclei, e.g., using the local density approximation.

self-interaction. _ Work in this direction is in progress.
To summarize, we have used a nonperturbative approach

to include quantum effects in nuclear matter using the frame-

work of QHD. Instead of going through a loop expansion
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