664 research outputs found

    Current induced domain wall dynamics in the presence of spin orbit torques

    Full text link
    Current induced domain wall (DW) motion in perpendicularly magnetized nanostripes in the presence of spin orbit torques is studied. We show using micromagnetic simulations that the direction of the current induced DW motion and the associated DW velocity depend on the relative values of the field like torque (FLT) and the Slonczewski like torques (SLT). The results are well explained by a collective coordinate model which is used to draw a phase diagram of the DW dynamics as a function of the FLT and the SLT. We show that a large increase in the DW velocity can be reached by a proper tuning of both torques.Comment: 9 pages, 3 figure

    Al-Substitution Effects on Physical Properties of the Colossal Magnetoresistance Compouns La0.67ca0.33mno3

    Full text link
    We present a detailed study of the polycrystalline perovskite manganites La0.67Ca0.33AlxMn1-xO3 (x = 0, 0.1, 0.15, 0.5) at low temperatures and high magnetic fields, including electrical resistance, magnetization, ac susceptibility. The static magnetic susceptibility was also measured up to 1000 K. All the samples show colossal magnetoresistance behavior and the Curie temperatures decrease with Al doping. The data suggest the presence of correlated magnetic clusters near by the ferromagnetic transition. This appears to be a consequence of the structural and magnetic disorder created by the random distribution of Al atoms.Comment: 13 pages including 5 figure

    Effect of black soldier fly larvae protein on the texture of meat analogues

    Get PDF
    Black soldier fly larvae are considered an alternative source of protein due to their high protein content and low environmental impact of farming. The effect of incorporation of black soldier fly larvae protein (87.6 ± 2.4 g/100 g content) on meat analogues textural characteristics was determined and compared with those of meat analogues prepared with other alternative sources of protein such as soy protein isolate and vital wheat gluten, while beef round, chicken breast, and a commercial plant-based meat analogue were used as reference matrices. Textural characteristics of the experimental meat analogues were used as response variables in robust regression models (R2 > 0.96) built to determine the main effects and interactions of proteins. Black soldier fly larvae protein decreased the textural characteristics of meat analogues as its amount in the formulation increased. The interaction of black soldier fly larvae protein with soy protein affected the hardness and chewiness of meat analogues, whereas the interaction with wheat gluten only affected their cohesiveness. Black soldier fly larvae protein can partially replace traditional proteins in meat analogues. The optimal incorporations of black soldier fly larvae protein in meat analogues which mimics textural characteristics of chicken breast and plant-based meat analogues were 6.7 g/100 g and 21.5 g/100 g, respectively

    Electric-field control of domain wall nucleation and pinning in a metallic ferromagnet

    Get PDF
    The electric (E) field control of magnetic properties opens the prospects of an alternative to magnetic field or electric current activation to control magnetization. Multilayers with perpendicular magnetic anisotropy (PMA) have proven to be particularly sensitive to the influence of an E-field due to the interfacial origin of their anisotropy. In these systems, E-field effects have been recently applied to assist magnetization switching and control domain wall (DW) velocity. Here we report on two new applications of the E-field in a similar material : controlling DW nucleation and stopping DW propagation at the edge of the electrode

    On Finslerized Absolute Parallelism spaces

    Full text link
    The aim of the present paper is to construct and investigate a Finsler structure within the framework of a Generalized Absolute Parallelism space (GAP-space). The Finsler structure is obtained from the vector fields forming the parallelization of the GAP-space. The resulting space, which we refer to as a Finslerized Parallelizable space, combines within its geometric structure the simplicity of GAP-geometry and the richness of Finsler geometry, hence is potentially more suitable for applications and especially for describing physical phenomena. A study of the geometry of the two structures and their interrelation is carried out. Five connections are introduced and their torsion and curvature tensors derived. Some special Finslerized Parallelizable spaces are singled out. One of the main reasons to introduce this new space is that both Absolute Parallelism and Finsler geometries have proved effective in the formulation of physical theories, so it is worthy to try to build a more general geometric structure that would share the benefits of both geometries.Comment: Some references added and others removed, PACS2010, Typos corrected, Amendemrnts and revisions performe

    Tidal tensors in the description of gravity and electromagnetism

    Full text link
    In 2008-2009, F. Costa and C. Herdeiro proposed a new gravito-electromagnetic analogy, based on tidal tensors. We show that connections on the tangent bundle of the space-time manifold can help not only in finding a covnenient geometrization of their ideas, but also a common mathematical description of the main equations of gravity and electromagnetism.Comment: submitted to: Journal of Nonlinear Mathematical Physic

    Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

    Full text link
    We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material

    Magnetic domain wall motion in a nanowire: depinning and creep

    Full text link
    The domain wall motion in a magnetic nanowire is examined theoretically in the regime where the domain wall driving force is weak and its competition against disorders is assisted by thermal agitations. Two types of driving forces are considered; magnetic field and current. While the field induces the domain wall motion through the Zeeman energy, the current induces the domain wall motion by generating the spin transfer torque, of which effects in this regime remain controversial. The spin transfer torque has two mutually orthogonal vector components, the adiabatic spin transfer torque and the nonadiabatic spin transfer torque. We investigate separate effects of the two components on the domain wall depinning rate in one-dimensional systems and on the domain wall creep velocity in two-dimensional systems, both below the Walker breakdown threshold. In addition to the leading order contribution coming from the field and/or the nonadiabatic spin transfer torque, we find that the adiabatic spin transfer torque generates corrections, which can be of relevance for an unambiguous analysis of experimental results. For instance, it is demonstrated that the neglect of the corrections in experimental analysis may lead to incorrect evaluation of the nonadiabaticity parameter. Effects of the Rashba spin-orbit coupling on the domain wall motion are also analyzed.Comment: 14 pages, 3 figure

    The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry

    Get PDF
    The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current.Comment: Main text and Supplementary Information, 33 pages and 12 figure

    Flexible Session Management in a Distributed Environment

    Full text link
    Many secure communication libraries used by distributed systems, such as SSL, TLS, and Kerberos, fail to make a clear distinction between the authentication, session, and communication layers. In this paper we introduce CEDAR, the secure communication library used by the Condor High Throughput Computing software, and present the advantages to a distributed computing system resulting from CEDAR's separation of these layers. Regardless of the authentication method used, CEDAR establishes a secure session key, which has the flexibility to be used for multiple capabilities. We demonstrate how a layered approach to security sessions can avoid round-trips and latency inherent in network authentication. The creation of a distinct session management layer allows for optimizations to improve scalability by way of delegating sessions to other components in the system. This session delegation creates a chain of trust that reduces the overhead of establishing secure connections and enables centralized enforcement of system-wide security policies. Additionally, secure channels based upon UDP datagrams are often overlooked by existing libraries; we show how CEDAR's structure accommodates this as well. As an example of the utility of this work, we show how the use of delegated security sessions and other techniques inherent in CEDAR's architecture enables US CMS to meet their scalability requirements in deploying Condor over large-scale, wide-area grid systems
    corecore