368 research outputs found

    Quantum Corrections to the Gravitational Potential and Orbital Motion

    Get PDF
    GRT predicts the existence of relativistic corrections to the static Newtonian potential, which can be calculated and verified experimentally. The idea leading to quantum corrections at large distances consists of the interactions of massless particles, which only involve their coupling energies at low energies. Using the quantum correction term of the potential we obtain the perturbing quantum acceleration function. Next, with the help of the Newton-Euler planetary equations, we calculate the time rates of changes of the orbital elements per revolution for three different orbits around the primary. For one solar mass primary and an orbit with semimajor axis and eccentricity equal to that of Mercury we obtain that Δωqu = 1.517x10–81 °/cy, while ΔMqu = –1.840x10–46 rev/cy

    Realistic Simulation of Local Solar Supergranulation

    Full text link
    I represent results three-dimensional numerical simulation of solar surface convection on scales local supergranulation with realistic model physics. I study thermal structure of convective motions in photosphere, the range of convection cell sizes and the penetration depths of convection. A portion of the solar photosphere extending 100 x 100 Mm horizontally and from 0 Mm down to 20 Mm below the visible surface is considered. I take equation of state and opacities of stellar matter and distribution with radius of all physical variables from Solar Standard Model. The equations of fully compressible radiation hydrodynamics with dynamical viscosity and gravity are solved. The high order conservative PPML difference scheme for the hydrodynamics, the method of characteristic for the radiative transfer and dynamical viscosity from subgrid scale modeling are applied. The simulations are conducted on a uniform horizontal grid of 1000 x 1000, with 168 nonuniformly spaced vertical grid points, on 256 processors with distributed memory multiprocessors on supercomputer MVS5000 in Computational Centre of Russian Academy of Sciences.Comment: 4 pages, 3 figures. To appear in AIP Conference Proceedings, "Exploring the Solar System and the Universe", Apr 8-12 2008, Bucharest, Romania, eds. Vasile Mioc, Cristiana Dumitrache & Nedelia A. Popesc

    Arctic Basemaps In Google Maps

    Get PDF

    Quantum Corrections to the Gravitational Potential and Orbital Motion

    Get PDF
    GRT predicts the existence of relativistic corrections to the static Newtonian potential, which can be calculated and verified experimentally. The idea leading to quantum corrections at large distances consists of the interactions of massless particles, which only involve their coupling energies at low energies. Using the quantum correction term of the potential we obtain the perturbing quantum acceleration function. Next, with the help of the Newton-Euler planetary equations, we calculate the time rates of changes of the orbital elements per revolution for three different orbits around the primary. For one solar mass primary and an orbit with semimajor axis and eccentricity equal to that of Mercury we obtain that Δωqu = 1.517x10–81 °/cy, while ΔMqu = –1.840x10–46 rev/cy

    The Voronoi diagram of circles made easy

    Get PDF

    Polygon Feature Extraction from Satellite Imagery Based on Colour Image Segmentation and Medial Axis

    Get PDF
    Areal features are of great importance in applications like shore line mapping, boundary delineation and change detection. This research work is an attempt to automate the process of extracting feature boundaries from satellite imagery. This process is intended to eventually replace manual digitization by computer assisted boundary detection and conversion to a vector layer in a Geographic Information System. Another potential application is to be able to use the extracted linear features in image matching algorithms. In multi-spectral satellite imagery, various features can be distinguished based on their colour. There has been a good amount of work already done as far as boundary detection and skeletonization is concerned, but this research work is different from the previous ones in the way that it uses the Delaunay graph and the Voronoi tessellation to extract boundary and skeletons that are guaranteed to be topologically equivalent to the segmented objects. The features thus extracted as object border can be stored as vector maps in a Geographic Information System after labelling and editing. Here we present a complete methodology of the skeletonization process from satellite imagery using a colour image segmentation algorithm with examples of road networks and hydrographic networks.

    On the isomorphism between the medial axis and a dual of the Delaunay graph

    Get PDF

    Reversibility of the Quad-Edge operations in the Voronoi data structure

    Get PDF

    Stellenwert der Magnetresonanztomographie in der Fruehdiagnostik der neuropathischen Osteoarthropathie

    Get PDF
    • …
    corecore