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Abstract—In this paper, we show a graph isomorphism
between a dual graph of the Delaunay graph of the sampled
points and the medial axis of the sampled features. This dual
graph captures the fact that two Delaunay triangles share two
vertices or an edge. Then, we apply it to the computation
of the medial axis of the features selected in an image. The
computation of the medial axis of images is of interest in
applications such as mapping, climatology, change detection,
medicine, etc. This research work provides a way to automate
the computation of the medial axis transform of the features
of color 2D images. In color images, various features can
be distinguished based on their color. The features are thus
extracted as object borders, which are sampled in order
to compute the medial axis transform. We present also a
prototype application for the completely automated or semi-
automated processing of (satellite) imagery and scanned maps.
Applications include coastline extraction, extraction of fields,
clear cuts, clouds, as well as heating or pollution monitoring
and dense forest mapping among others.

Keywords-Voronoi diagram; Delaunay graph; medial axis;
graph isomorphism; topology;

I. INTRODUCTION

Popular methods for computation of the medial axis are
thinning using mathematical morphology [1, chap. 9] and
skeletonization using distance transform [2]. This research
is concerned with computing the medial axis using a dual of
the Delaunay graph, that captures the adjacency of internal
Delaunay triangles along edges or vertices, together with the
Voronoi diagram.

The work by Amenta et al. [3] leads to the extraction of
object boundary from a set of sufficiently well sampled data
points. The vertices of the Voronoi diagram approximate
the medial axis of a set of sample points from a smooth
curve. The vertices of the Voronoi diagram of the sample
points were inserted into the original set of sample points
and a new Delaunay triangulation was computed [3]. The
circumcircles of this new triangulation approximate empty
circles between the original boundary of the object and
its skeleton. Thus, any Delaunay edge connecting a pair
of the original sample points in the new triangulation is
a part of the border [3]. The work by Amenta et al. [3]
shows that the “crust” or the boundary of a polygon can
be extracted from an unstructured set of points provided

the data points are well sampled. However it requires the
additional computation of the Voronoi diagram after having
added the Voronoi vertices of the original sample points as
generators. It is thus a two step process.

Further research by Gold [4] leads to a one-step border
(crust) extraction algorithm. In a Delaunay triangulation,
each Delaunay edge is shared by two triangles and the
circumcenters of these triangles are the Voronoi vertices.
A Voronoi edge connecting these two circumcenters is
the dual edge to the Delaunay edge considered here.
According to [4], a Delaunay edge is a part of the border
if it has a circle that does not contain any Voronoi vertex.
Furthermore, those Delaunay edges that are not the part of
the border set have their dual Voronoi edges as being part
of the skeleton.

Gold and Snoeyink [5] further simplify their method
and show that the boundary can be extracted in a single
step. Gold [4] discusses about “anti-crust” in the context of
skeleton extraction citing a brief introduction of this term in
[3]. The idea behind getting the skeleton is that a Voronoi
edge is a part of the skeleton if its corresponding dual
Delaunay edge is not a part of the border set (crust) and
it lies completely within the selected object. Thus, selecting
the Voronoi edges lying inside the selected object that are
dual of the non-crust Delaunay edges should give us the
skeleton (see Figure 1). The Voronoi edges thus selected
form a tree structure called the “anti-crust” [4], that extends
toward the boundary but does not cross it.

The anti-crust of an object, as described above, forms a
tree like structure that contains the skeleton. Once all the
Delaunay edges belonging to the border set or the crust
are identified using the condition given by [4], it is easy
to identify the Voronoi edges belonging to the anti-crust.
Figure 2 shows the Delaunay triangulation (dashed edges),
the corresponding Voronoi diagram (dotted edges) and the
crust edges (solid thick edges).

Once the anti-crust is identified, an appropriate pruning
method can be applied to get rid of the unwanted edges,
that are the main problem of this kind of approach. The
“hairs” around the skeleton result from the presence of
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(a) The Voronoi diagram

(b) Anti-crust

(c) Skeleton

Figure 1. Skeleton as seen as the anti-crust.

Figure 2. Anti-crust from the crust.

Figure 3. Hair around the skeleton composed of multiple edges.

three adjacent sample points whose circumcircle does not
contain any other sample point - either near the end of
a main skeleton branch; or at locations on the boundary
where there is minor perturbation because of raster sampling
[4] (see Figure 3). The problem of identifying skeleton
edges now reduces to reasonably pruning the anti-crust.
A skeleton retraction scheme suggested by [6] gets rid of
the hairs and also results in smoothing of the boundary
of the object. Ogniewicz [7] presents an elaborate skeleton
pruning scheme based on various residual functions. Thus a
hierarchic skeleton is created which is good for multiscale
representation.

In this paper, we show the graph isomorphism between
the medial axis of a 2D object and a newly defined dual
graph of the Delaunay graph. The dual of the Delaunay
graph considered here is the one with faces of the Delaunay
triangles replaced by their isobarycenters. An edge in the
dual graph joins two such isobarycenters of two adjacent
triangles. Every vertex of the Delaunay triangulation has
a corresponding polygon in the dual graph formed by the
dual edges. We formulate rules to address singularities in
computation of skeletons. The rules also handle degenerate
cases where more than three vertices in the Delaunay graph
are cocircular. Application of these rules gives rise to a
valid and robust skeleton. We apply these rules to generate
skeletons of various objects.

II. PRELIMINARIES

Definition 1. (Medial axis) The medial axis of a closed and
bounded set X ⊂ R2 is the set of all centers of maximal
radius circles inscribed in X .

Let P = {pi, i = 1, ...,m} be a set of points of R2.

Definition 2. (Voronoi region) The Voronoi region V (pi,P)
of pi ∈ P with respect to the set P is: V (pi,P) = {x ∈
R2|∀pj ∈ P, pj 6= pi → d (x, pi) < d (x, pj)}.

Definition 3. (Voronoi diagram) The Voronoi diagram of
P is the union V (P) =

⋃
pi∈P ∂V (pi,P) of all Voronoi

region boundaries.

Definition 4. (Delaunay graph) The Delaunay graph
DG (P) of P is the dual graph of V (P) defined as follows:
• the set of vertices of DG (P) is P ,
• for each edge of V (P) that belongs to the common

boundary of V (pi,P) and of V (pj ,P) with pi, pj ∈ P
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and pi 6= pj , there is an edge of DG (P) between pi

and pj and reciprocally, and
• for each vertex of V (P) that belongs to the com-

mon boundary of V (pi1 ,P),. . .,V (pi4 ,P), with ∀k ∈
{1, ..., } , pik

∈ P all distinct, there exists a complete
graph K4 between the pik

, k ∈ {1, ..., 4}, and recipro-
cally.

III. OUR MEDIAL AXIS APPROACH

This is our main contribution where we exhibit the graph
isomorphism between the dual graph of the Delaunay graph
and the medial axis.

Since the vertices of the Delaunay graph are sample points
located on the boundary of the object, the boundary of
the objects is a subset of the Delaunay graph. Let us now
consider the subgraph IDG of the Delaunay graph DG that
lies in the interior or the boundary of the objects. Now
consider the following dual graph DIDG of the graph IDG,
constructed by applying the following rules in order:
• the vertices of DIDG are the isobarycenters of the

vertices of each one of the triangles of IDG that do
not belong to a complete subgraph of at least 4 vertices
of IDG (that are cocircular) (see Fig 4(a));

• for each complete subgraph of at least 4 vertices of
IDG (that are cocircular), the corresponding subgraph
of DIDG is reduced to a point (see Fig 4(b));

• for each set E of edges e1...ek, k > 2 of the boundary
of IDG that share one common vertex v that is a vertex
of a complete subgraph K of at least 4 vertices of IDG,
there is a set of edges of DIDG that link v to each
one of the isobarycenters of the triangles t1...tj such
that ti ∈ IDG and ti has two of its edges in E that are
not edges of K, and there is one edge of DIDG that
links v to the center of the circumcircle of the vertices
of K (see Fig 4(c));

• for each set E of edges e1...ek, k > 2 of the boundary
of IDG that share one common vertex v that is not a
vertex of a complete subgraph of at least 4 vertices of
IDG, there is a set of edges of DIDG that link v to
each one of the isobarycenters of the triangles t1...tj
such that ti ∈ IDG and ti has two of its edges in E
(see Fig 4(d));

• for each edge e that is not on the boundary of IDG and
that does not link two vertices of a complete subgraph
of at least 4 vertices of IDG, there exists an edge of
DIDG that links the isobarycenters of the vertices of
each one of the triangles that share e (see Fig 4(e));

Proposition 5. The graph DIDG is isomorphic to the
medial axis of the boundary of IDG.

Proof: We call ramification vertices, the vertices of
DIDG that have a degree greater than 2. We call dangling
vertices, the vertices of DIDG that have degree 1.
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Figure 4. Rules.

• The dangling vertices of DIDG correspond to triangles
of IDG that have two of their edges on the boundary
of DIDG (which are therefore adjacent). The corre-
sponding vertices of the medial axis are the centers of
maximal circles that touch two adjacent edges of the
boundary of IDG (see Fig 5(a)).

• The ramification vertices of DIDG correspond either
to the common vertex of a set E of edges e1...ek, k > 2
of the boundary of IDG, or to the isobarycenters of the
triangles of DIDG that have no edge in the boundary
of IDG. The later kind of ramification vertices (that
we will call type I ramification vertices) correspond
to Voronoi vertices that are at the same distance with
respect to 3 distinct vertices on 3 distinct portions of
the boundary of IDG. The earlier kind of ramification
vertices (that we will call type II ramification vertices)
correspond to singular points of the boundary of IDG
(see Fig 5(b)).

• The internal vertices on the paths between two type I
ramification vertices of DIDG correspond to triangles
of IDG that have one edge in the boundary of IDG.
The edges in such paths link isobarycenters of triangles
of IDG that have their edge in the boundary of IDG

418686939393939389919191
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on different portions of the boundary of IDG. These
edges correspond to edges of the medial axis, whose
points are the centers of maximal circles that touch
two different portions of the boundary of IDG (see
Fig 5(c)).

• The internal vertices on paths between one type I
ramification vertices of DIDG and a dangling vertex of
DIDG correspond to triangles of IDG that have one
edge in the boundary of IDG. Again, the edges in such
paths link isobarycenters of triangles of IDG that have
their edge in the boundary of IDG on different portions
of the boundary of IDG. Again, these edges correspond
to edges of the medial axis, whose points are the centers
of maximal circles that touch two different portions of
the boundary of IDG (see Fig 5(d)).

• The internal vertices on paths between a type II ram-
ification vertex and a type I ramification vertex corre-
spond (like internal vertices between type I ramification
vertices) to triangles of IDG that have one edge in
the boundary of IDG, except for the vertex that is
connected to the type II ramification vertex by a single
edge, which corresponds to a triangle of IDG that has
two of its edges on the boundary of DIDG (which
are therefore adjacent). Again, the edges in such paths
link isobarycenters of triangles of IDG that have their
edge in the boundary of IDG on different portions of
the boundary of IDG, or link the isobarycenter of a
triangle that has two of its edges on the boundary of
IDG. Again, these edges correspond to edges of the
medial axis, whose points are the centers of maximal
circles that touch either two different portions of the
boundary of IDG, or two portions of the boundary of
IDG that have a common singular vertex (see Fig 5(e)).

• The internal vertices on paths between a type II ram-
ification vertex of DIDG and a dangling vertex of
DIDG correspond (like internal vertices between type
I ramification vertices) to triangles of IDG that have
one edge in the boundary of IDG, except for the
vertex that is connected to the type II ramification
vertex by a single edge, which corresponds either to
a triangle of IDG that has two of its edges on the
boundary of DIDG (which are therefore adjacent),
or to the circumcircle of the vertices of a complete
subgraph K of 4 or more cocircular vertices of IDG.
Again, the edges in such paths link isobarycenters of
triangles of IDG that have their edge in the boundary
of IDG on different portions of the boundary of IDG,
or link the isobarycenter of a triangle that has two of
its edges on the boundary of IDG, or link a singular
vertex of IDG with the center of a circumcircle of at
leat 4 cocircular vertices of IDG. Again, these edges
correspond to edges of the medial axis, whose points
are the centers of maximal circles that touch either
two different portions of the boundary of IDG, or two

portions of the boundary of IDG that have a common
singular vertex (see Fig 5(f)).

Thus, the graph DIDG is isomorphic to the medial axis of
the boundary of IDG.
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Figure 5. Proposition.

IV. SEGMENTATION

The segmentation method adopted here is the one pro-
vided by [8] which is based on feature space analysis.

Feature space analysis is used extensively in image un-
derstanding tasks. [8] provide a comparatively new and
efficient segmentation algorithm that is based on feature
space analysis and relies on the mean-shift algorithm to
robustly determine the cluster means. A feature space is
a space of feature vectors. These features can be object
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descriptors or patterns in the case of an image. As an
example, if we consider a color image having three bands
(red, green, and blue), then the image we see as intensity
values plotted in Euclidean XY space is said to be in
image space. Consider a three dimensional space with the
axes being the three bands of the image. Each color vector
corresponding to a pixel from the image can be represented
as point in the feature space.

V. AUTOMATED APPROACH TO SKELETONIZATION

The general approach adopted here is:
1) Segment a color image into prominent objects.
2) Ask the user if he or she wants to process all the

objects independently (automatic process) or select an
object (semi-automatic process).

3) Collect sample points for each object to be processed.
4) Construct the Delaunay triangulation and its dual from

the sample points.
5) Extract the medial axis using rules provided in sec-

tion III.
Once objects are defined as homogeneous regions by the
segmenter, the next step is to either select them all or some
of them. To achieve this, the user is allowed to select a
region on the image. If an object is composed of more
than one regions then multiple object selection can be made
and regions combined to form a single object. A wrongly
selected region can be removed from the selection. The user
input is processed and the selected region is highlighted and
selected for next processing.

Once we have an object or all the objects chosen from an
image, the next step is to sample its boundary in order to
generate points used to construct the Delaunay triangulation.
The Delaunay triangulation of the sample points is computed
using the incremental algorithm given by [9] which is
stored in the quad-edge data structure. This is followed by
computation of the Voronoi vertices for all faces of the
triangulation. The boundary of the object is extracted using
the criteria given by [4]. The dual of the Delaunay graph
mentioned in Section 2 is computed. The medial axis is
obtained by replacing the edges of the dual of the Delaunay
graph by corresponding edges of the Voronoi diagram.

VI. TIME COMPLEXITY

Comaniciu [10, p. 21] shows that the complexity of the
probabilistic mean shift type algorithm that is employed in
the segmentation algorithm [8] is O(mn), with m � n
where n is the number of pixels in the input image (or
the number of feature vectors in the feature space) and m
is the number of vectors in the initial feature palette or
clusters. Comaniciu [10, p. 29] claims that the segmentation
algorithm is linear with the number of pixels in the image.
The complexity of the computation of the Delaunay graph
IDG, the dual DIDG and the medial axis is O(l log l)

where l is the number of sampled pixels. Overall, the time
complexity can be said to be O(max{mn, l log l}).

VII. RESULTS

We present the result of the computation of medial axis on
different kinds of images: a scanned map (selected objects,
see Fig 6) and a remote sensing image (all the objects,
see Fig 7). The skeleton is shown in black in Fig 6(c)
and Fig 7(c) along with the delaunay graph and the dual
graph introduced in this paper. The dangling edges of the
skeleton corresponding to the artifacts of sampling can be
easily removed by removing the dangling branches of the
dual graph of the Delaunay graph consisting of only one
triangle barycenter and its edge to the main branch. Further,
Fig 6 shows some missing information. The missing bits
in the scanned map example could be obtained if the user
selectes all the features in the application program.

VIII. CONCLUSIONS

We show in this paper how the medial axis of an object
can be derived by following simple rules to avoid discon-
nected and degenerate skeletons. We showed that the result-
ing skeleton extracted using these rules are isomorphic to
the medial axis. Further we design an effective methodology
for automated vectorization and simplification of features
in color images and implement our medial extraction in it.
The methodology enables the automated extraction of the
boundaries and the medial axis of an object in a single step.
Coastline delineation, snow cover mapping, cloud detection,
and dense forest mapping are a few areas where satisfactory
results can be obtained.
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(a) Original image

(b) The border (dotted) of the selected object,
the dual graph (dashed) and the skeleton (solid)

(c) The border (solid), the Delaunay graph (dot-
ted), the dual graph (dashed) and the skeleton
(solid thick) of a small portion of the image

Figure 6. The medial axis of a scanned image of the map of the North
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(a) Original image

(b) The border (dotted) of the selected object, the dual graph
(dashed) and the skeleton (solid)

(c) The border (solid), the Delaunay graph (dotted), the dual
graph (dashed) and the skeleton (solid thick) of a small portion
of the image

Figure 7. The medial axis of a remote sensing image of a lake of Lyngby
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