176 research outputs found

    Tridimensional to bidimensional transition in magnetohydrodynamic turbulence with a guide field and kinetic helicity injection

    Full text link
    We study the transition in dimensionality of a three-dimensional magnetohydrodynamic flow forced only mechanically, when the strength of a magnetic guiding field is gradually increased. We use numerical simulations to consider cases in which the mechanical forcing injects (or not) helicity in the flow. As the guiding field is increased, the strength of the magnetic field fluctuations decrease as a power law of the guiding field intensity. We show that for strong enough guiding fields, the helical magnetohydrodynamic flow can become almost two-dimensional. In this case, the mechanical energy can undergo a process compatible with an inverse cascade, being transferred preferentially towards scales larger than the forcing scale. The presence of helicity changes the spectral scaling of the small magnetic field fluctuations, and affects the statistics of the velocity field and of the velocity gradients. Moreover, at small scales the dynamics of the flow becomes dominated by a direct cascade of helicity, which can be used to derive scaling laws for the velocity field.Comment: 11 pages, 11 figure

    Generation of turbulence through frontogenesis in sheared stratified flows

    Get PDF
    The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas one possible mechanism in a balanced flow at large scales is through the formation of fronts, a common occurrence in geophysical dynamics. We show in this paper that an iconic configuration in laboratory and numerical experiments for the study of turbulence, that of the Taylor-Green or von K\'arm\'an swirling flow, can be suitably adapted to the case of fluids with large aspect ratios, leading to the creation of an imposed large-scale vertical shear. To this effect we use direct numerical simulations of the Boussinesq equations without net rotation and with no small-scale modeling, and with this idealized Taylor-Green set-up. Various grid spacings are used, up to 20482×2562048^2\times 256 spatial points. The grids are always isotropic, with box aspect ratios of either 1:41:4 or 1:81:8. We find that when shear and stratification are comparable, the imposed shear layer resulting from the forcing leads to the formation of multiple fronts and filaments which destabilize and further evolve into a turbulent flow in the bulk, with a sizable amount of dissipation and mixing, and with a cycle of front creation, instability, and development of turbulence. The results depend on the vertical length scales for shear and for stratification, with stronger large-scale gradients being generated when the two length scales are comparable.Comment: 19 pages, 15 figures, several simulations added in this new versio

    Turbulent magnetic dynamo excitation at low magnetic Prandtl number

    Full text link
    Planetary and stellar dynamos likely result from turbulent motions in magnetofluids with kinematic viscosities that are small compared to their magnetic diffusivities. Laboratory experiments are in progress to produce similar dynamos in liquid metals. This work reviews recent computations of thresholds in critical magnetic Reynolds number above which dynamo amplification can be expected for mechanically-forced turbulence (helical and non-helical, short wavelength and long wavelength) as a function of the magnetic Prandtl number PMP_M. New results for helical forcing are discussed, for which a dynamo is obtained at PM=5×103P_M=5\times10^{-3}. The fact that the kinetic turbulent spectrum is much broader in wavenumber space than the magnetic spectrum leads to numerical difficulties which are bridged by a combination of overlapping direct numerical simulations and subgrid models of magnetohydrodynamic turbulence. Typically, the critical magnetic Reynolds number increases steeply as the magnetic Prandtl number decreases, and then reaches an asymptotic plateau at values of at most a few hundred. In the turbulent regime and for magnetic Reynolds numbers large enough, both small and large scale magnetic fields are excited. The interactions between different scales in the flow are also discussed.Comment: 8 pages, 8 figures, to appear in Physics of Plasma

    Intermittency in Hall-magnetohydrodynamics with a strong guide field

    Get PDF
    We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.Comment: 10 pages, 8 figure

    Helical rotating turbulence. Part II. Intermittency, scale invariance and structures

    Get PDF
    We study the intermittency properties of the energy and helicity cascades in two 1536^3 direct numerical simulations of helical rotating turbulence. Symmetric and anti-symmetric velocity increments are examined, as well as probability density functions of the velocity field and of the helicity density. It is found that the direct cascade of energy to small scales is scale invariant and non-intermittent, whereas the direct cascade of helicity is highly intermittent. Furthermore, the study of structure functions of different orders allows us to identify a recovery of isotropy of strong events at very small scales in the flow. Finally, we observe the juxtaposition in space of strong laminar and persistent helical columns next to time-varying vortex tangles, the former being associated with the self-similarity of energy and the latter with the intermittency of helicity.Comment: 11 pages, 10 figure

    On the inverse cascade of magnetic helicity

    Full text link
    We study the inverse cascade of magnetic helicity in conducting fluids by investigating the detailed transfer of helicity between different spherical shells in Fourier space in direct numerical simulations of three-dimensional magnetohydrodynamics (MHD). Two different numerical simulations are used, one where the system is forced with an electromotive force in the induction equation, and one in which the system is forced mechanically with an ABC flow and the magnetic field is solely sustained by a dynamo action. The magnetic helicity cascade at the initial stages of both simulations is observed to be inverse and local (in scale space) in the large scales, and direct and local in the small scales. When saturation is approached most of the helicity is concentrated in the large scales and the cascade is non-local. Helicity is transfered directly from the forced scales to the largest scales. At the same time, a smaller in amplitude direct cascade is observed from the largest scale to small scales.Comment: Submitted to PR

    Shell to shell energy transfer in MHD, Part I: steady state turbulence

    Full text link
    We investigate the transfer of energy from large scales to small scales in fully developed forced three-dimensional MHD-turbulence by analyzing the results of direct numerical simulations in the absence of an externally imposed uniform magnetic field. Our results show that the transfer of kinetic energy from the large scales to kinetic energy at smaller scales, and the transfer of magnetic energy from the large scales to magnetic energy at smaller scales, are local, as is also found in the case of neutral fluids, and in a way that is compatible with Kolmogorov (1941) theory of turbulence. However, the transfer of energy from the velocity field to the magnetic field is a highly non-local process in Fourier space. Energy from the velocity field at large scales can be transfered directly into small scale magnetic fields without the participation of intermediate scales. Some implications of our results to MHD turbulence modeling are also discussed.Comment: Submitted to PR

    Helicity cascades in rotating turbulence

    Get PDF
    The effect of helicity (velocity-vorticity correlations) is studied in direct numerical simulations of rotating turbulence down to Rossby numbers of 0.02. The results suggest that the presence of net helicity plays an important role in the dynamics of the flow. In particular, at small Rossby number, the energy cascades to large scales, as expected, but helicity then can dominate the cascade to small scales. A phenomenological interpretation in terms of a direct cascade of helicity slowed down by wave-eddy interactions leads to the prediction of new inertial indices for the small-scale energy and helicity spectra.Comment: 7 pages, 8 figure

    Inertial Range Scaling, Karman-Howarth Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D

    Full text link
    We present an extension of the Karman-Howarth theorem to the Lagrangian averaged magnetohydrodynamic (LAMHD-alpha) equations. The scaling laws resulting as a corollary of this theorem are studied in numerical simulations, as well as the scaling of the longitudinal structure function exponents indicative of intermittency. Numerical simulations for a magnetic Prandtl number equal to unity are presented both for freely decaying and for forced two dimensional MHD turbulence, solving directly the MHD equations, and employing the LAMHD-alpha equations at 1/2 and 1/4 resolution. Linear scaling of the third-order structure function with length is observed. The LAMHD-alpha equations also capture the anomalous scaling of the longitudinal structure function exponents up to order 8.Comment: 34 pages, 7 figures author institution addresses added magnetic Prandtl number stated clearl

    Carbon isotope discrimination and water use efficiency in interspecific Prunus hybrids subjected to drought stress

    Get PDF
    In C3 plants, carbon isotope composition (δ13C) is influenced by isotopic effects during diffusion from the atmosphere to the chloroplasts and carboxylation reactions. This work aimed to demonstrate if δ13C of leaf soluble carbohydrates (δ13Cleaves) and of dry matter from new-growth shoots (δ13Cshoots) of Prunus plants subjected to a period of water deficit was related to water use efficiency (WUE). For this purpose, three interspecific Prunus hybrids rootstocks (6–5, 7-7 and G × N) were gradually subjected to drought and then rewatered. Soil water content (SWC) decreased from 26.1 to 9.4% after 70 days of water shortage, when plants reached values of predawn leaf water potential (LWP) ranging from −3.12 to −4.00 MPa. Gas exchange, particularly net photosynthetic and transpiration rates, differed among the three hybrids, leading to different values of WUE. After 70 days of drought, a significant δ13C increase of 5.86, 4.28 and 4.99‰ was observed in 6–5, 7-7 and G × N, respectively. Significant correlations between δ13C and other parameters (substomatal CO2/atmospheric CO2 ratio, stomatal conductance and stem water potential) were found in all hybrids. The rewatering phase caused a recovery of the physiological status of the plants. The isotope composition of δ13Cshoots was correlated with the average WUE measured during the whole experiment. δ13Cleaves and δ13Cshoots were positively related (r = 0.87; p < 0.001). The isotopic signature was a reliable screening tool to identify Prunus genotypes tolerant to drought stress. The results suggest the possibility of using δ13C as an integrated indicator of level of drought stress in plants subjected to prolonged stress conditions
    corecore