4 research outputs found

    Single Chamber Pvd/pecvd Process For In Situ Control Of The Catalyst Activity On Carbon Nanotubes Growth

    No full text
    In this paper, we studied the effect of oxygen on the catalyst activity and related influence on the nanotubes (CNTs) growth by low-pressure/ high-density plasma. CNTs were prepared using a novel single vacuum chamber reactor combining (i) plasma assisted physical vapour deposition (PVD) for catalyst deposition under O2, NH3 or Ar atmosphere with (ii) electron cyclotron resonance (ECR) C2 H2/NH3 plasma enhanced chemical vapour deposition (PECVD) process for carbon nanotubes growth. The substrates are in situ prepared by controlled PVD allowing the deposition of sub-nanometric catalyst (Fe, Ni, Pd) films followed by ECR-PECVD CNTs growth. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis of CNTs show that the volume oxidation of the nanometric catalyst particles partially inhibits the CNTs growth while the catalyst surface oxidation can be reduced by the atomic nitrogen during the PECVD process. The specially designed PVD/PECVD process preserves the catalyst from moisture contamination, reducing walls nanotube defects. © 2005 Elsevier B.V. All rights reserved.2001-4 SPEC. ISS.11011105Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., (2003) Plasma Sources Sci. Technol., 12, p. 205Kato, T., Jeong, G.-H., Hirata, T., Hatakeyama, R., Tohji, K., Motomiya, K., (2003) Chem. Phys. Lett., 381, p. 422Li, Y.M., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Dai, H.J., (2004) Nano Lett., 4 (2), p. 317Boskovic, B.O., Stolojan, V., Khan, R.U.A., Haq, S., Silva, S.R.P., (2002) Nat. Mater., 1, p. 165Minea, T.M., Point, S., Granier, A., Touzeau, M., (2004) Appl. Phys. Lett., 85 (7), p. 1244Lacerda, R.G., Teh, A.S., Yang, M.H., Teo, K.B.K., Rupesinghe, N.L., Dalal, S.H., Koziol, K.K.K., Legagneux, P., (2004) Appl. Phys. Lett., 84 (2), p. 269Valentini, L., Kenny, J.M., Lozzi, L., Santucci, S., (2002) J. Appl. Phys., 92 (10), p. 6188Yang, D.J., Zhang, Q., Yoon, S.F., Ahn, J., Wang, S.G., Zhou, Q., Wang, Q., Li, J.Q., (2003) Surf. Coat. Technol., 167, p. 288Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., Hasko, D.G., Pirio, G., Legagneux, P., Pribat, D., (2001) Appl. Phys. Lett., 79, p. 1534Brault, P., Thomann, A.-L., Andreazza-Vignolle, C., (1998) Surf. Sci., 406, pp. L597Minea, T.M., Point, S., Popa, G., Touzeau, M., Granier, A., (2004) Proceedings of the 17th ESCAMPIG, p. 271. , Constanta, Romania, September 1-5Point, S., Minea, T., Bouchet-Fabre, B., Granier, A., Turban, G., (2004) Diamond and Related Materials, , (in press) (Available online 8 December)Wang, Y.Y., Gupta, S., Nemanich, R.J., (2004) Appl. Phys. Lett., 85 (13), p. 2601Ensinger, W., (1997) Nucl. Instrum. Methods Phys. Res. B, 127-128, p. 79

    Single- and Few-Walled Carbon Nanotubes Grown at Temperatures as Low as 450 °C: Electrical and Field Emission Characterization

    No full text
    Single-wall (SW-) and few-walled (FW-) carbon nanotubes (CNTs) were synthesized on aluminum/cobalt coated silicon at temperatures as low as 450 °C by plasma enhanced chemical vapor deposition technique (PECVD). The SWCNTs and FWCNTs grow vertically oriented and well separated from each other. The cold field emission studies of as-grown SWCNTs and FWCNTs showed low turn-on field emission threshold voltages, strongly dependent of the nanotubes morphology. Current-voltage curves of individual CNTs, measured by conductive atomic force microscopy (CAFM), showed an electrical resistance of about 90 KO, that is attributed mainly to the resistance of the contact between the CNTs and the conductive CAFM tip (Au and Pt).JRC.I.4-Nanotechnology and Molecular Imagin

    Single- And Few-walled Carbon Nanotubes Grown At Temperatures As Low As 450°c: Electrical And Field Emission Characterization

    No full text
    Single-wall (SW-) and few-walled (FW-) carbon nanotubes (CNTs) were synthesized on aluminum/ cobalt coated silicon at temperatures as low as 450°C by plasma enhanced chemical vapor deposition technique (PECVD). The SWCNTs and FWCNTs grow vertically oriented and well separated from each other. The cold field emission studies of as-grown SWCNTs and FWCNTs showed low turn-on field emission threshold voltages, strongly dependent of the nanotubes morphology. Current-voltage curves of individual CNTs, measured by conductive atomic force microscopy (CAFM), showed an electrical resistance of about 90 KΩ, that is attributed mainly to the resistance of the contact between the CNTs and the conductive CAFM tip (Au and Pt). Copyright © 2007 American Scientific Publishers All rights reserved.7933503353Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., (2003) Nature, 424, p. 654Lee, S.W., Lee, D.S., Morjan, R.E., Jhang, S.H., Sveningsson, M., Nerushev, O.A., Park, Y.W., Campbell, E.E.B., (2004) Nano Lett, 4, p. 2027Modi, A., Koratkar, N., Lass, E., Wei, B., Ajayan, P.M., (2003) Nature, 423, p. 171Ci, L., Zhou, Z., Yan, X., Liu, D., Yuan, H., Song, L., Wang, J., Xie, S., (2003) J. Phys. Chem. B, 107, p. 8760Flahaut, E., Laurent, C., Peigney, A., (2005) Carbon, 43, p. 375Qian, C., Qi, H., Gao, B., Cheng, Y., Qiu, Q., Qin, L.-C., Zhou, O., Liu, J., (2006) J. Nanosci. Nanotechnol, 6, p. 1346Bower, C., Zhu, W., Jin, S., Zhou, O., (2000) Appl. Phys. Lett, 77, p. 830Minea, T.M., Point, S., Granier, A., Touzeau, M., (2004) Appl. Phys. Lett, 85, p. 1244Boskovic, B.O., Stolojan, V., Khan, R.U.A., Haq, S., Silva, S.R.P., (2002) Nature Mater, 1, p. 165Gohier, A., Minea, T.M., Djouadi, M.A., Granier, A., (2007) J. Appl. Phys, 101, p. 054317Kato, T., Hatakeyama, R., Tohji, K., (2006) Nanotechnology, 17, p. 2223Cantora, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Robertson, J., (2006) Nano Lett, 6, p. 1107Bae, E.J., Min, Y.-S., Kang, D., Ko, J.-H., Park, W., (2005) Chem. Mater, 17, p. 5141Point, S., Minea, T., Bouchet-Fabre, B., Granier, A., Turban, G., (2005) Diamond Relat. Mater, 14, p. 891Minea, T.M., Point, S., Gohier, A., Granier, A., Godon, C., Alvarez, F., (2005) Surf. Coat. Technol, 200, p. 1101Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., (2005) Jap. J. Appl. Phys, 44, p. 1558Wang, Y.Y., Gupta, S., Nemanich, R.J., (2004) Appl. Phys. Lett, 85, p. 2601Li, Y., Kim, W., Zhang, Y., Rolandi, M., Wang, D., Dai, H., (2001) J. Phys. Chem. B, 105, p. 11424Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantora, M., Robertson, J., (2007) Nano Lett, 7, p. 602A. Gohier, T. M. Minea, M. A Djouadi, J. Jiménez, and A. Granier, Physica E 37, 34 (2007)Bonard, J.-M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Solid-State Electronics, 45, p. 893Forbes, R.G., (1999) Ultramicroscopy, 79, p. 11Zhirnov, V.V., Lizzul-Rinne, C., Wojak, G.J., Sanwald, R.C., Hren, J.J., (2001) J. Vac. Sci. Technol. B, 19, p. 87Bonard, J.-M., Dean, K.A., Coll, B.F., Klinke, C., (2002) Phys. Rev. Lett, 89, p. 197602Teo, K.B.K., Lee, S.-B., Chhowalla, M., Semet, V., Binh, V.T., Groening, O., Castignolles, M., Milne, W.I., (2003) Nanotechnology, 14, p. 204Song, J., Wang, X., Riedo, E., Wang, Z.L., (2005) Nano Lett, 4, p. 195
    corecore