7,666 research outputs found
Magnetization Plateau of Classical Ising Model on Shastry-Sutherland Lattice
We study the magnetization for the classical antiferromagnetic Ising model on
the Shastry-Sutherland lattice using the tensor renormalization group approach.
With this method, one can probe large spin systems with little finite-size
effect. For a range of temperature and coupling constant, a single
magnetization plateau at one third of the saturation value is found. We
investigate the dependence of the plateau width on temperature and on the
strength of magnetic frustration. Furthermore, the spin configuration of the
plateau state at zero temperature is determined.Comment: 6 pages, 8 figure
Scaling laws for the photo-ionisation cross section of two-electron atoms
The cross sections for single-electron photo-ionisation in two-electron atoms
show fluctuations which decrease in amplitude when approaching the
double-ionisation threshold. Based on semiclassical closed orbit theory, we
show that the algebraic decay of the fluctuations can be characterised in terms
of a threshold law as with exponent
obtained as a combination of stability exponents of the triple-collision
singularity. It differs from Wannier's exponent dominating double ionisation
processes. The details of the fluctuations are linked to a set of infinitely
unstable classical orbits starting and ending in the non-regularisable triple
collision. The findings are compared with quantum calculations for a model
system, namely collinear helium.Comment: 4 pages, 1 figur
Electronic structure of YbB: Is it a Topological Insulator or not?
To resolve the controversial issue of the topological nature of the
electronic structure of YbB, we have made a combined study using density
functional theory (DFT) and angle resolved photoemission spectroscopy (ARPES).
Accurate determination of the low energy band topology in DFT requires the use
of modified Becke-Johnson exchange potential incorporating the spin-orbit
coupling and the on-site Coulomb interaction of Yb electrons as large
as 7 eV. We have double-checked the DFT result with the more precise GW band
calculation. ARPES is done with the non-polar (110) surface termination to
avoid band bending and quantum well confinement that have confused ARPES
spectra taken on the polar (001) surface termination. Thereby we show
definitively that YbB has a topologically trivial B 2-Yb 5
semiconductor band gap, and hence is a non-Kondo non-topological insulator
(TI). In agreement with theory, ARPES shows pure divalency for Yb and a -
band gap of 0.3 eV, which clearly rules out both of the previous scenarios of
- band inversion Kondo TI and - band inversion non-Kondo TI. We
have also examined the pressure-dependent electronic structure of YbB,
and found that the high pressure phase is not a Kondo TI but a
\emph{p}-\emph{d} overlap semimetal.Comment: The main text is 6 pages with 4 figures, and the supplementary
information contains 6 figures. 11 pages, 10 figures in total To be appeared
in Phys. Rev. Lett. (Online publication is around March 16 if no delays.
Nonvolatile memories using deep traps formed in HfO₂ by Nb ion implantation
We report nonvolatile memories (NVMs) based on deep-energy trap levels formed in HfO₂ by metal ion implantation. A comparison of Nb- and Ta-implanted samples shows that suitable charge-trapping centers are formed in Nb-implanted samples, but not in Ta-implanted samples. This is consistent with density-functional theory calculations which predict that only Nb will form deep-energy levels in the bandgap of HfO₂. Photocurrent spectroscopy exhibits characteristics consistent with one of the trap levels predicted in these calculations. Nb-implanted samples showing memory windows in capacitance–voltage (V) curves always exhibit current (I) peaks in I–V curves, indicating that NVM effects result from deep traps in HfO₂. In contrast, Ta-implanted samples show dielectric breakdowns during the I–V sweeps between 5 and 11 V, consistent with the fact that no trap levels are present. For a sample implanted with a fluence of 10¹³Nb cm⁻², the charge losses after 10⁴ s are ∼9.8 and ∼25.5% at room temperature (RT) and 85°C, respectively, and the expected charge loss after 10 years is ∼34% at RT, very promising for commercial NVMs
Persistent spin current in mesoscopic ferrimagnetic spin ring
Using a semiclassical approach, we study the persistent magnetization current
of a mesoscopic ferrimagnetic ring in a nonuniform magnetic field. At zero
temperature, there exists persistent spin current because of the quantum
fluctuation of magnons, similar to the case of an antiferromagnetic spin ring.
At low temperature, the current shows activation behavior because of the
field-induced gap. At higher temperature, the magnitude of the spin current is
proportional to temperature T, similar to the reported result of a
ferromagnetic spin ring.Comment: 6 pages, 3 figures, one more reference adde
Recommended from our members
An Interpreter for the Basic Programming Language
In this thesis, the first chapter provides the general description of this interpreter. The second chapter contains a formal definition of the syntax of BASIC along with an introduction to the semantics. The third chapter contains the design of data structure. The fourth chapter contains the description of algorithms along with stages for testing the interpreter and the design of debug output.
The stages and actions-are represented internally to the computer in tabular forms. For statement parsing working syntax equations are established. They serve as standards for the conversion of source statements into object pseudocodes. As the statement is parsed for legal form, pseudocodes for this statement are created. For pseudocode execution, pseudocodes are represented internally to the computer in tabular forms
A Spectral Line Survey from 138.3 to 150.7 GHZ toward Orion-KL
We present the results of a spectral line survey from 138.3 to 150.7 GHz
toward Orion-KL. The observations were made using the 14 m radio telescope of
Taeduk Radio Astronomy Observatory. Typical system temperatures were between
500 and 700 K, with the sensitivity between K in units of .
A total of 149 line spectra are detected in this survey. Fifty lines have
been previously reported, however we find 99 new detections. Among these new
lines, 32 are `unidentified', while 67 are from molecular transitions with
known identifications. There is no detection of H or He recombination lines.
The identified spectra are from a total of 16 molecular species and their
isotopic variants. In the range from 138.3 to 150.7 GHz, the strongest spectral
line is the J=3-2 transition of CS molecule, followed by transitions of the
, , , and . Spectral lines from
the large organic molecules such as , , , and are prominent; with 80 % of the
identified lines arising from transitions of these molecules. The rotational
temperatures and column densities are derived using the standard rotation
diagram analysis for (), , and with and . These estimates are fairly comparable to the values for the
same molecule in other frequency regions by other studies.Comment: 10 figures, 2 tex files for a manuscript and tables, accepted to Ap
- …