374 research outputs found

    Itinerant ferromagnetism in half-metallic CoS_2

    Full text link
    We have investigated electronic and magnetic properties of the pyrite-type CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have obtained the ferromagnetic ground state with nearly half-metallic nature. The half-metallic stability is studied by using the fixed spin moment method. The non-negligible orbital magnetic moment of Co 3d electrons is obtained as μL=0.06μB\mu_L = 0.06 \mu_B in the local spin density approximation (LSDA). The calculated ratio of the orbital to spin angular momenta / = 0.15 is consistent with experiment. The effect of the Coulomb correlation between Co 3d electrons is also explored with the LSDA + U method. The Coulomb correlation at Co sites is not so large, U1U \lesssim 1 eV, and so CoS_2 is possibly categorized as an itinerant ferromagnet. It is found that the observed electronic and magnetic behaviors of CoS_2 can be described better by the LSDA than by the LSDA + U.Comment: 4 pages, 3 postscript figure

    Nonperturbative Description of Deep Inelastic Structure Functions in Light-Front QCD

    Get PDF
    We explore the deep inelastic structure functions of hadrons nonperturbatively in an inverse power expansion of the light-front energy of the probe in the framework of light-front QCD. We arrive at the general expressions for various structure functions as the Fourier transform of matrix elements of different components of bilocal vector and axial vector currents on the light-front in a straightforward manner. The complexities of the structure functions are mainly carried by the multi-parton wave functions of the hadrons, while, the bilocal currents have a dynamically dependent yet simple structure on the light-front in this description. We also present a novel analysis of the power corrections based on light-front power counting which resolves some ambiguities of the conventional twist analysis in deep inelastic processes. Further, the factorization theorem and the scale evolution of the structure functions are presented in this formalism by using old-fashioned light-front time-ordered perturbation theory with multi-parton wave functions. Nonperturbative QCD dynamics underlying the structure functions can be explored in the same framework. Once the nonperturbative multi-parton wave functions are known from low-energy light-front QCD, a complete description of deep inelastic structure functions can be realized.Comment: Revtex, 30 pages and no figur

    Transcriptional regulation of the urokinase receptor (u-PAR) - A central molecule of invasion and metastasis

    Get PDF
    The phenomenon of tumor-associated proteolysis has been acknowledged as a decisive step in the progression of cancer. This short review focuses on the urokinase receptor (u-PAR), a central molecule involved in tumor-associated invasion and metastasis, and summarizes the transcriptional regulation of u-PAR. The urokinase receptor (u-PAR) is a heavily glycosylated cell surface protein and binds the serine protease urokinase specifically and with high affinity. It consists of three similar cysteine-rich repeats and is anchored to the cell membrane via a GPI-anchor. The u-PAR gene comprises 7 exons and is located on chromosome 19q13. Transcriptional activation of the u-PAR promoter region can be induced by binding of transcription factors (Sp1, AP-1, AP-2, NF-kappaB). One current study gives an example for transcriptional downregulation of u-PAR through a PEA3/ets transcriptional silencing element. Knowledge of the molecular regulation of this molecule in tumor cells could be very important for diagnosis and therapy in the near future

    Antimetastatic Potential of PAI-1 Specific RNA Aptamers

    Full text link
    The serine protease inhibitor plasminogen activator inhibitor-1 (PAI-1) is increased in several cancers, including breast, where it is associated with a poor outcome. Metastatic breast cancer has a dismal prognosis, as evidenced by treatment goals that are no longer curative but are largely palliative in nature. PAI-1 competes with integrins and the urokinase plasminogen activator receptor on the surface of breast cancer cells for binding to vitronectin. This results in the detachment of tumor cells from the extracellular matrix, which is critical to the metastatic process. For this reason, we sought to isolate RNA aptamers that disrupt the interaction between PAI-1 and vitronectin. Through utilization of combinatorial chemistry techniques, aptamers have been selected that bind to PAI-1 with high affinity and specificity. We identified two aptamers, WT-15 and SM-20, that disrupt the interactions between PAI-1 and heparin, as well as PAI-1 and vitronectin, without affecting the antiprotease activity of PAI-1. Furthermore, SM-20 prevented the detachment of breast cancer cells (MDA-MB-231) from vitronectin in the presence of PAI-1, resulting in an increase in cellular adhesion. Therefore, the PAI-1 aptamer SM-20 demonstrates therapeutic potential as an antimetastatic agent and could possibly be used as an adjuvant to traditional chemotherapy for breast cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78126/1/oli.2008.0177.pd

    The relationship between coronary calcification and the natural history of coronary artery disease

    Get PDF
    OBJECTIVES The aim of the current study was to explore the impact of plaque calcification in terms of absolute calcified plaque volume (CPV) and in the context of its percentage of the total plaque volume at a lesion and patient level on the progression of coronary artery disease.BACKGROUND Coronary artery calcification is an established marker of risk of future cardiovascular events. Despite this, plaque calcification is also considered a marker of plaque stability, and it increases in response to medical therapy.METHODS This analysis included 925 patients with 2,568 lesions from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry, in which patients underwent clinically indicated serial coronary computed tomography angiography. Plaque calcification was examined by using CPV and percent CPV (PCPV), calculated as (CPV/plaque volume) x 100 at a per-plaque and per-patient level (summation of all individual plaques).RESULTS CPV was strongly correlated with plaque volume (r = 0.780; p < 0.001) at baseline and with plaque progression (r = 0.297; p < 0.001); however, this association was reversed after accounting for plaque volume at baseline (r = -0146; p < 0.001). In contrast, PCPV was an independent predictor of a reduction in plaque volume (r = -0.11; p < 0.001) in univariable and multivariable linear regression analyses. Patient-level analysis showed that high CPV was associated with incident major adverse cardiac events (hazard ratio: 3.01: 95% confidence interval: 1.58 to 5.72), whereas high PCPV was inversely associated with major adverse cardiac events (hazard ratio: 0.529; 95% confidence interval: 0.229 to 0.968) in multivariable analysis.CONCLUSIONS Calcified plaque is a marker for risk of adverse events and disease progression due to its strong association with the total plaque burden. When considered as a percentage of the total plaque volume, increasing PCPV is a marker of plaque stability and reduced risk at both a lesion and patient level. (C) 2021 by the American College of Cardiology Foundation.Cardiolog

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl
    corecore