43 research outputs found

    Critical points in edge tunneling between generic FQH states

    Full text link
    A general description of weak and strong tunneling fixed points is developed in the chiral-Luttinger-liquid model of quantum Hall edge states. Tunneling fixed points are a subset of `termination' fixed points, which describe boundary conditions on a multicomponent edge. The requirement of unitary time evolution at the boundary gives a nontrivial consistency condition for possible low-energy boundary conditions. The effect of interactions and random hopping on fixed points is studied through a perturbative RG approach which generalizes the Giamarchi-Schulz RG for disordered Luttinger liquids to broken left-right symmetry and multiple modes. The allowed termination points of a multicomponent edge are classified by a B-matrix with rational matrix elements. We apply our approach to a number of examples, such as tunneling between a quantum Hall edge and a superconductor and tunneling between two quantum Hall edges in the presence of interactions. Interactions are shown to induce a continuous renormalization of effective tunneling charge for the integrable case of tunneling between two Laughlin states. The correlation functions of electronlike operators across a junction are found from the B matrix using a simple image-charge description, along with the induced lattice of boundary operators. Many of the results obtained are also relevant to ordinary Luttinger liquids.Comment: 23 pages, 6 figures. Xiao-Gang Wen: http://dao.mit.edu/~we

    Author Correction: One sixth of Amazonian tree diversity is dependent on river floodplains

    Get PDF

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    IONIC LIMIT IN GRAPHITE-FLUOROARSENATE INTERCALATION COMPOUNDS

    No full text
    Les mesures de conductivité électrique, de réflectance et de consommation du fluor suggèrent une limite d'ionisation de C+ 20 environ dans les composés de graphite-fluorarsenate. Une oxydation supérieure à cette limite introduit des centres correspondant à des liaisons covalentes C-F provoquant la diffusion des porteurs ; ceci est déduit des mesures de conductivité en fonction de la température et de XPS.Measurements of electrical conductivity, optical reflectance and F2-uptake suggest an ionic limit around C20 in graphite-fluoroarsenate compounds. Oxidation beyond this limit introduces carrier scattering centers in the form of covalent C-F bonds as deduced from measurements of conductivity versus temperature and XPS

    Modeling Structure and Dynamics of Selective Attention

    No full text
    We present a cognitive architecture that includes perception, memory, attention, decision making, and action. The model is formulated in terms of an abstract dynamics for the activations of features, their binding into object entities, semantic categorization as well as related memories and appropriate reactions. The dynamical variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. The model is applied to the problem of disambiguating a number of theories for negative priming, an effect that is studied in connection to selective attention

    Group Development and Team Effectiveness: Using Cognitive Representations to Measure Group Development and Predict Task Performance and Group Viability

    No full text
    The authors reconceptualize the theory of group development for application to task groups and propose two key sequential phases: membership and competence. A method for measuring developmental progress in task teams based on congruence in group cognitive representations of the team as it is, the ideal team, and the team as it ought to be is proposed. A system for computing group states based on structural connections among member cognitive representations is offered. Measures of group state representations in 49 project teams were collected at beginning, midpoint, and end of each team and related to team effectiveness. Hypotheses based on group development theory predicting effects of convergence and congruence in group state representations on team effectiveness are supported. Further insights into the developmental process of group states are discussed. The authors conclude by arguing for the return of group development theory as an explanation for disparate findings in team research
    corecore