137,326 research outputs found
Three-dimensional tracking solar energy concentrator and method for making same
A three dimensional tracking solar energy concentrator, consisting of a stretched aluminized polymeric membrane supported by a hoop, was presented. The system is sturdy enough to withstand expected windage forces and precipitation. It can provide the high temperature output needed by central station power plants for power production in the multi-megawatt range
Portable linear-focused solar thermal energy collecting system
A solar heat collection system is provided by utilizing a line-focusing device that is effectively a cylindrically curved concentrator within a protected environment formed by a transparent inflatable casing. A target, such as a fluid or gas carrying conduit is positioned within or near the casing containing the concentrator, at the line focus of the concentrator. The casing can be inflated at the site of use by a low pressure air supply to form a unitary light weight structure. The collector, including casing, concentrator and target, is readily transportable and can be used either at ground level or on rooftops. The inflatable concentrator can be replaced with a rigid metal or other concentrator while maintaining the novel advantages of the whole solar heat collection system
Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation
The size, shape, and orientation of damage correlates well between the polar backscatter technique and the deply technique. There is good quantitative correlation between the areas of damage indicated by the two techniques. These results suggest that the polar backscatter technique is sensitive to specific orientations of damage. The polar backscatter technique provides a good qualitative image of the size and shape of the largest zone of damage in each of the principal orientations. A quantitative estimate of the extent of these largest damage zones is obtained from the polar backscatter technique. The selective sensitivity of polar backscatter provides a useful tool for further studies of the mechanisms of impact damage in graphite fiber reinforced composite laminates
Ultrasonic calibration device
Device is an instrument for producing known changes in both acoustic absorption and phase velocity. Calibration signal arises from actual change of acoustic parameters, not from electrical simulation. Instrument is able to simulate changes in sensitivity enhancement achieved by use of ultrasonic resonators, which cannot be achieved using electrical calibration techniques
Non-destructive evaluation of composite materials using ultrasound
Investigation of the nondestructive evaluation of advanced composite-laminates is summarized. Indices derived from the measurement of fundamental acoustic parameters are used in order to quantitatively estimate the local material properties of the laminate. The following sections describe ongoing studies of phase insensitive attenuation measurements, and discuss several phenomena which influences the previously reported technique of polar backscatter. A simple and effective programmable gate circuit designed for use in estimating attenuation from backscatter is described
A two-degree Kelvin refrigerator
Open-cycle cryogenic refrigerator maintains temperature as low as 2K for periods up to six months. Designed to cool an infrared detector, refrigerator can be used in cooling Josephson-junction devices, magnetic bubble domains, and superconducting devices
Secondary reflectors for economical sun-tracking energy collection system: A concept
Mechanism is simpler and lower in cost because it moves heat-collector pipe to stay in focus with sun, instead of moving heavy reflectors
Low-cost solar tracking system
Smaller heat-collector is moved to stay in focus with the sun, instead of moving reflector. Tracking can be controlled by storing data of predicted solar positions or by applying conventional sun-sensing devices to follow solar movement
- …