530 research outputs found

    A comparison of methods to estimate seismic phase delays: numerical examples for coda wave interferometry

    Get PDF
    Time-shift estimation between arrivals in two seismic traces before and after a velocity perturbation is a crucial step in many seismic methods. The accuracy of the estimated velocity perturbation location and amplitude depend on this time shift. Windowed cross-correlation and trace stretching are two techniques commonly used to estimate local time shifts in seismic signals. In the work presented here we implement Dynamic Time Warping (DTW) to estimate the warping function – a vector of local time shifts that globally minimizes the misfit between two seismic traces. We compare all three methods using acoustic numerical experiments. We show that DTW is comparable to or better than the other two methods when the velocity perturbation is homogeneous and the signal-to-noise ratio is high. When the signal-to-noise ratio is low, we find that DTW and windowed cross-correlation are more accurate than the stretching method. Finally, we show that the DTW algorithm has good time resolution when identifying small differences in the seismic traces for a model with an isolated velocity perturbation. These results impact current methods that utilize not only time shifts between (multiply) scattered waves, but also amplitude and decoherence measurements

    Isolating Retrograde and Prograde Rayleigh-Wave Modes Using a Polarity Mute

    Get PDF
    Estimates of S-wave velocity with depth from Rayleigh-wave dispersion data are limited by the accuracy of fundamental and/or higher mode signal identification. In many scenarios, the fundamental mode propagates in retrograde motion, whereas higher modes propagate in prograde motion. This difference in particle motion (or polarity) can be used by joint analysis of vertical and horizontal inline recordings. We have developed a novel method that isolates modes by separating prograde and retrograde motions; we call this a polarity mute. Applying this polarity mute prior to traditional multichannel analysis of surface wave (MASW) analysis improves phase velocity estimation for fundamental and higher mode dispersion. This approach, in turn, should lead to improvement of S-wave velocity estimates with depth. With two simple models and a field example, we have highlighted the complexity of the Rayleigh-wave particle motions and determined improved MASW dispersion images using the polarity mute. Our results show that we can separate prograde and retrograde signals to independently process fundamental and higher mode signals, in turn allowing us to identify lower frequency dispersion when compared with single component data. These examples demonstrate that the polarity mute approach can improve estimates of S-wave velocities with depth

    The Virtual Refraction: Useful Spurious Energy in Seismic Interferometry

    Get PDF
    Seismic interferometry is rapidly becoming an established technique to recover the Green’s function between receivers, but practical limitations in the source-energy distribution inevitably lead to spurious energy in the results. Instead of attempting to suppress all such energy, we use a spurious wave associated with the crosscorrelation of refracted energy at both receivers to infer estimates of subsurface parameters. We named this spurious event the virtual refraction. Illustrated by a numerical two-layer example, we found that the slope of the virtual refraction defines the velocity of the faster medium and that the stationary-phase point in the correlation gather provides the critical offset. With the associated critical time derived from the real shot record, this approach includes all of the necessary information to estimate wave speeds and interface depth without the need of inferences from other wave types

    Acoustic and Seismic Fields of Hydraulic Jumps at Varying Froude Numbers

    Get PDF
    Mechanisms that produce seismic and acoustic wavefields near rivers are poorly understood because of a lack of observations relating temporally dependent river conditions to the near-river seismoacoustic fields. This controlled study at the Harry W. Morrison Dam (HWMD) on the Boise River, Idaho, explores how temporal variation in fluvial systems affects surrounding acoustic and seismic fields. Adjusting the configuration of the HWMD changed the river bathymetry and therefore the form of the standing wave below the dam. The HWMD was adjusted to generate four distinct wave regimes that were parameterized through their dimensionless Froude numbers (Fr) and observations of the ambient seismic and acoustic wavefields at the study site. To generate detectable and coherent signals, a standing wave must exceed a threshold Fr value of 1.7, where a nonbreaking undular jump turns into a breaking weak hydraulic jump. Hydrodynamic processes may partially control the spectral content of the seismic and acoustic energies. Furthermore, spectra related to reproducible wave conditions can be used to calibrate and verify fluvial seismic and acoustic models

    Monitoring Glacier Surface Seismicity in Time and Space Using Rayleigh Waves

    Get PDF
    Sliding glaciers and brittle ice failure generate seismic body and surface wave energy characteristic to the source mechanism. Here we analyze continuous seismic recordings from an array of nine short-period passive seismometers located on Bench Glacier, Alaska (USA) (61.033°N, 145.687°W). We focus on the arrival-time and amplitude information of the dominant Rayleigh wave phase. Over a 46-hour period we detect thousands of events using a cross-correlation based event identification method. Travel-time inversion of a subset of events (7% of the total) defines an active crevasse, propagating more than 200 meters in three hours. From the Rayleigh wave amplitudes, we estimate the amount of volumetric opening along the crevasse as well as an average bulk attenuation ( Q ¯ = 42) for the ice in this part of the glacier. With the remaining icequake signals we establish a diurnal periodicity in seismicity, indicating that surface run-off and subglacial water pressure changes likely control the triggering of these surface events. Furthermore, we find that these events are too weak (i.e., too noisy) to locate individually. However, stacking individual events increases the signal-to-noise ratio of the waveforms, implying that these periodic sources are effectively stationary during the recording period

    Source Mechanism of Small Long-Period Events at Mount St. Helens in July 2005 Using Template Matching, Phase-Weighted Stacking, and Full-Waveform Inversion

    Get PDF
    Long-period (LP, 0.5-5 Hz) seismicity, observed at volcanoes worldwide, is a recognized signature of unrest and eruption. Cyclic LP “drumbeating” was the characteristic seismicity accompanying the sustained dome-building phase of the 2004–2008 eruption of Mount St. Helens (MSH), WA. However, together with the LP drumbeating was a near-continuous, randomly occurring series of tiny LP seismic events (LP “subevents”), which may hold important additional information on the mechanism of seismogenesis at restless volcanoes. We employ template matching, phase-weighted stacking, and full-waveform inversion to image the source mechanism of one multiplet of these LP subevents at MSH in July 2005. The signal-to-noise ratios of the individual events are too low to produce reliable waveform inversion results, but the events are repetitive and can be stacked. We apply network-based template matching to 8 days of continuous velocity waveform data from 29 June to 7 July 2005 using a master event to detect 822 network triggers. We stack waveforms for 359 high-quality triggers at each station and component, using a combination of linear and phase-weighted stacking to produce clean stacks for use in waveform inversion. The derived source mechanism points to the volumetric oscillation (∼10 m3) of a subhorizontal crack located at shallow depth (∼30 m) in an area to the south of Crater Glacier in the southern portion of the breached MSH crater. A possible excitation mechanism is the sudden condensation of metastable steam from a shallow pressurized hydrothermal system as it encounters cool meteoric water in the outer parts of the edifice, perhaps supplied from snow melt

    Co-Eruptive Tremor from Bogoslof Volcano: Seismic Wavefield Composition at Regional Distances

    Get PDF
    We analyze seismic tremor recorded during eruptive activity over the course of the 2016–2017 eruption of Bogoslof volcano, Alaska. Only regional recordings of the tremor wavefield exist for Bogoslof, making it a challenge to place the recordings in context with other eruptions that are normally captured by local seismic data. We apply a technique of time-frequency polarization analysis to three-component seismic data to reveal the wavefield composition of Bogoslof eruption tremor.We find that at regional distances, the tremor is dominated by P-waves in the band from 1.5 to 10 Hz. Using this information, along with an enriched Bogoslof earthquake catalog, we obtain estimates of average reduced displacement (DR) for eruption tremor during 25 of the 70 Bogoslof events. DR reaches as high as approximately 40 cm2 for two of the major events, similar to other VEI~3 eruptions in Alaska. Overall, average reduced displacement displays a weak correlation to plume height during the first half of the 9-month-long eruption sequence, with a few notable exceptions. The two events with the highest DR values also generated measurable eruption tremor at very-long-periods (VLP) between 0.05 and 0.15 Hz
    corecore