11 research outputs found

    Boosting electron transport in non-fullerene acceptors using non-chlorinated solvents

    Get PDF
    Chlorinated solvents are commonly used to process organic semiconductor devices but have several negative environmental impacts. The choice of processing solvent significantly affects the layer microstructure and device performance, so replacing chlorinated solvents is non-trivial. Herein, we investigate the microstructural and electron-transporting properties of small-molecule non-fullerene acceptor (NFA) films and transistors processed from various non-chlorinated solvents. We show that the ensuing NFA transistors exhibit improved layer morphology, crystallinity, and electron mobility superior to those processed from chlorinated solvents. Our work highlights using non-chlorinated solvents to optimise charge transport in organic semiconductors and their devices while mitigating adverse environmental effects

    A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on body weight in healthy subjects aged 16 years and above

    Get PDF

    N-type polymer semiconductors incorporating para, meta, and ortho-carborane in the conjugated backbone

    No full text
    We report on three novel n-type conjugated polymer semiconductors incorporating carborane in the polymer backbone and demonstrate their applicability in optoelectronic devices. Comparing the optoelectronic properties of para-, meta-, and ortho-carborane isomers revealed similar energetic characteristics between the different polymers, with the carborane unit acting as a “conjugation breaker”, confining electron delocalisation to the conjugated moieties. The fabrication of all-polymer organic photovoltaic (OPV) devices and thin-film transistors (TFTs) revealed some differences in device performance between the polymers, with the meta-carborane based polymer exhibiting superior performance in both OPV and TFT devices

    Near-IR absorbing molecular semiconductors incorporating cyanated benzothiadiazole acceptors for high performance semi-transparent n-type organic field-effect transistors

    No full text
    Small band gap molecular semiconductors are of interest for the development of transparent electronics. Here we report two near-infrared (NIR), n-type small molecule semiconductors, based upon an acceptor-donor-acceptor (A-D-A) approach. We show that the inclusion of molecular spacers between the strong electron accepting end group, 2,1,3-benzothiadiazole-4,5,6-tricarbonitrile, and the donor core affords semiconductors with very low band gaps down to 1 eV. Both materials were synthesised by a one-pot, sixfold nucleophilic displacement of a fluorinated precursor by cyanide. Significant differences in solid-state ordering and charge carrier mobility are observed depending on the nature of the spacer, with a thiophene spacer resulting in solution processed organic field-effect transistors (OFETs) exhibiting excellent electron mobility up to 1.1 cm2 V-1s-1. The use of silver nanowires as the gate electrodes enables the fabrication of semi-transparent OFET device with average visible transmission of 71% in the optical spectrum
    corecore