A systematic review, meta-analysis, and meta-regression of the impact of diurnal intermittent fasting during Ramadan on body weight in healthy subjects aged 16 years and above

Jahrami, H. A., Alsibai, J., Clark, C. C. T. & Faris, M. A-I. E.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

DOI 10.1007/s00394-020-02216-1 ISSN 1436-6207 ESSN 1436-6215

Publisher: Springer

The final publication is available at Springer via http://dx.doi.org/10.1007/s00394-020-02216-1

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

A systematic review, meta-analysis, and meta-regression of the impact 2

of diurnal intermittent fasting during Ramadan on body weight

in healthy subjects aged 16 years and above 4

Haitham A. Jahrami^{1,2} · Joud Alsibai³ · Cain C. T. Clark⁴ · Mo'ez Al-Islam E. Faris³ 5

6 Abstract

8

9

Purpose Studies on the efect of Ramadan diurnal intermittent fasting (RDIF) on body weight have yielded conlicting 7 results. Therefore, we conducted a systematic review and meta-analysis to estimate the efect size of body weight changes in healthy, non-athletic Muslims practicing Ramadan fasting, and to assess the efect of covariates such as age, sex, fasting time duration, season, and country, using subgroup analysis, and meta-regression. Covariate adjustments were performed 10

to explain the variability of weight change in response to Ramadan fasting. 11

Methods CINAHL, Cochrane, EBSCOhost, EMBASE, Google Scholar, ProQuest Medical, PubMed/MEDLINE, Scien-12

ceDirect, Scopus, and Web of Science databases were searched from date of inception in 1950 to the end of August 2019. 13

Results Eighty-ive studies, conducted in 25 countries during 1982–2019, were identiied. RDIF yielded a signiicant, 14

but small reduction in body weight (K = 85, number of subjects, N = 4176 (aged 16–80 years), Hedges' g = -0.360, 95% 15

conidence interval (CI) – 0.405 to – 0.315, l^2 = 45.6%), this effect size translates into difference in means of – 1.022 kg 16

(95% CI - 1.164 kg to - 0.880 kg). Regression analysis for moderator covariates revealed that fasting time (min/day) is a 17

significant (P < 0.05) moderator for weight change at the end of Ramadan, while age and sex are not. Variable efects for the 18 season and country were found. 19

Conclusion RDIF may confer a significant small reduction in body weight in non-athletic healthy people aged 16 years and 20

above, directly associated with fasting time and variably correlated with the season, and country. 21

Keywords Body weight · Caloric restriction · Diurnal intermittent fasting · Meta-analysis · Obesity · Ramadan · Systematic 22 review 23

A1		
A2		
A3		
A4 A5		Mo'ez Al-Islam E. Faris mfaris@sharjah.ac.ae; moezfaris@hotmail.com
A6 A7	1	Rehabilitation Services, Periphery Hospitals, Ministry of Health, Manama, Bahrain
A8 A9	2	College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain

Department of Clinical Nutrition and Dietetics, College A10 of Health Sciences, Research Institute for Medical and Health A11 Sciences (RIMHS), University of Sharjah, P.O.Box 27272, A12 Sharjah, United Arab Emirates A13

A14 Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK A15

Introduction

Obesity represents one of the causal factors for the most prevalent non-communicable diseases worldwide, with a concomitantly high economic and societal burden, respectively [1, 2]. The economic and health burden arises from the high cost of the medical management of obesity-related comorbidities, such as diabetes, cardiovascular diseases, and cancers [3]. Mounting evidence supports the notion that caloric restriction, weight-reducing diets or intermit-tent fasting, and physical exercise can reverse, or protect against, the adverse metabolic perturbations associated with obesity [4-6].

Ramadan is the ninth month of the Islamic lunar calendar, during which healthy adult Muslims refrain from consum-ing food and drink from dawn until sunset. During Rama-dan, and throughout the globe, the majority of practicing

1

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Muslims have two main meals, one immediately after sunset Database searches 42

(suhoor) and one just before dawn (iftar) [7]. During the 43

44

45

46 fasting (RDIF) represents a unique pattern of intermittent ScienceDirect, Scopus and Web of Science from database 47 fasting that involves consistent diurnal abstinence from food inception in 1950 to the end of August 2019. The search 48 and drink, for a fasting period of 12-18 h (depending on the strategy included relevant keywords :"Islamic fasting" Or 49

season) over 29-30 days. 50 The impact of intermittent fasting and caloric restric-51 tion on body weight loss has been questioned, and several intermittent fasting" OR "Ramadan fast" OR "Intermittent 52 original research and review articles have been published prolonged fasting during Ramadan" OR "Recurrent circa-53 in an attempt to answer this guestion during the last decade dian fasting" AND "body weight" OR "body composition" 54 [5, 6, 9–16], with indings, however, bereft of uniformity. OR "body mass" OR "body mass index" OR "anthropomet-55 Given that Ramadan fasting is a form of intermittent fasting rics" OR "anthropometry". Reference lists of the obtained 56 and time-restricted feeding pattern [17, 18] that is globally studies were hand searched, and authors were contacted to 57 observed, its impact on body weight loss is of contemporary ind relevant articles and reviews and to make sure that all 58 interest. Furthermore, in a recent meta-analysis on meta-related publications were included in the current analysis. 59 bolic syndrome components (waist circumference, systolic 60 blood pressure, fasting plasma/serum glucose, triglycerides, 61 and high-density lipoprotein cholesterol) [19], bodyweight 62

change was not investigated. Thus, the present systematic 63 review and meta-analysis aimed to systematically summarize 64 and analyze available scientiic evidence and to clarify the 65 results of published literature about the efect of RDIF on 66 body weight in healthy, non-athletic people observing Ram-67 adan fasting. The current meta-analysis also investigates the 68 impact of some contextual variables, speciically; the dura-69 tion of the intermittent fasting period on the magnitude of 70 weight loss. Findings of the current review will help to sys-71 tematically and comprehensively test the efect size of body 72 weight changes in healthy, non-athletic Muslims practicing 73 fasting during Ramadan month, assess the generalizability of 74 reported results, obtain a more stable estimate of the efect 75 size of fasting during Ramadan on body weight change, and 76 conduct subgroup analyses for associated confounding fac-77 tors and to investigate diferences between diferent seasons 78 and countries. Based on the nature of Ramadan fasting that 79 involves consistent, frequent abstinence from food and drink, 80 even water, we hypothesized that this systematic review and 81 meta-analysis would show a signiicant body weight loss at 82 the end of the fasting month.

Materials and methods 84

This meta-analysis used Meta-analysis Of Observational 85

Studies in Epidemiology (MOOSE) as a guideline for report-86 ing indings [20]. 87

night hours, from sunset to dawn, people are permitted to Two authors (JS and MF) conducted an electronic search in 89 eat and drink freely, but they are not allowed to consume any ten databases: CINAHL, Cochrane, EBSCOhost, EMBASE, 90 food or drink after dawn [8]. Ramadan diurnal intermittent Google Scholar, ProQuest Medical, PubMed/MEDLINE, 91 92 93 94

"Ramadan fasting" OR "Ramadan diurnal fasting" OR 95 "Ramadan intermittent fasting" OR "Ramadan model of 96 97 98 99 100 101 102 103

Inclusion criteria

We included observational and intervention clinical stud-106 ies that studied the efect of RDIF on body weight. Inclu-107 sion criteria for study selection were: (1) publication date 108 between the inception of the database in 1950 to the end of 109 August 2019; (2) original research articles published in the 110 English language; (3) studies that reported numerical values 111 (e.g., arithmetic mean with/without standard deviation, SD) 112 for the body weight; (4) studies that assessed the efect of 113 RDIF on healthy people as the target population in prospec-114 tive observational studies or as healthy controls in case-con-115 trol, semi-experimental, and experimental or interventional 116 studies. As we were looking for studies that examined the 117 efect of RDIF on body weight, we included studies that 118 measured body mass in at least two stages: before Ramadan 119 fasting month as the baseline (e.g., few days or 1-2 weeks 120 before Ramadan month or the irst few days of Ramadan 121 month), and post fasting (at least two weeks into the fasting 122 month or after completion of the fasting month). It should 123 be noted that Islamic laws pertaining to fasting specify that 124 premenopausal women are exempt from fasting during men-125 struation days; therefore, these women are not expected to 126 complete fasting for the whole month of Ramadan. A similar 127 exemption applies to older people who may ind it hard to 128 complete the entire Ramadan month and may miss some 129 fasting days. AQ3 0

Exclusion criteria

The following exclusion criteria were applied on retrieved 132 articles to eliminate factors that may incur potential 133

105

131

methodological and guality issues: (1) studies that were 134 135 exclusively conducted on fasting children and adolescents (less than 18 years old), (2) studies that included patients 136 with diferent diseases or conditions who were observing 137 RDIF including diabetes: (3) studies on the efect of RDIF 138 139 on Muslim athletes who were observing Ramadan fasting; (4) lack of full text after contacting the respective authors; 140 (5) studies that expressed changes in body weight using bar 141 graphs and curves, without reporting exact numerical val-142 ues; (6) studies on pregnant and/or lactating women who 143 were observing Ramadan fasting; (7) studies that reported 144 the post-Ramadan measurement after passing one month 145 or longer, as mounting evidence supports that biochemical 146 variables induced by RDIF disappear or return to the pre-147 fasting level after one month of Ramadan cessation [21-23]; 148 (8) case reports, abstracts, review articles, editorials, and 149 non-English-language articles; (9) unpublished, non-peer-150 151 reviewed data; all of which were excluded from the quantitative and qualitative analysis: and (10) studies that involved 152 153 special dietary and physical activity plans during the fasting month. Articles were excluded from the current analysis 154 if they met any of the aforementioned criteria. The low 155 dia-gram of study selection is presented in Fig. 1. 156

157

Main outcomes and measures

The principal outcome of this review was to report the efect of 158 RDIF as efect size changes in body weight. Two authors (JS and 159 MF) independently screened the titles and abstracts of identiied 160 studies and assessed the studies for eligibility. The screening 161 was done by irst going through all titles and abstracts to exclude 162 irrelevant publications. Two authors (JS and MF) performed the 163 initial data extraction. Any conlicts in opinion regarding study 164 eligibility were resolved through dialog with a third member (HJ) 165 to reach consensus. To standardize data extraction, the review 166 team collected data for study characteristics (e.g., title, country, 167 year, sample size, participants' characteristics such as sex, age, 168 or propor-tion of males); and the main indings for body weight 169 before 170

Fig. 1 Flowchart for the selection of publications included in the systematic review and meta-analysis

- 171 and at the end of Ramadan. Extracted data were entered into
- 172 Microsoft Excel Sheet in preparation for analyses.

173 Estimating fasting time length and season

174 Ramadan month, as presented in the lunar calendar, was matched with the Gregorian calendar using a time and date 175 website (https://www.timeanddate.com/holidavs/us/ramad 176 an-begins). The daily length of fasting during Ramadan 177 month was calculated using the sunrise and sunset times 178 reported for that month for the city/country of each included 179 study (https://www.timeanddate.com/sun/@8469718). Time 180 points for Ramadan fasting are the call to prayer (Athan) for 181 Fair (abstinence or Imsak time, end of pre-fasting mealtime 182 or suhoor) and sunset or Maghrib (breakfast or Iftar meal-183 time) prayer times. The sunrise prayer time is declared by 184 Fair Athan to be about a mean of 80 min before the real 185 sunrise time, as recorded in the Islamic calendar for prayer 186 times. Therefore, the actual length of fasting time was cal-187 culated by adding 80 min to the time between the sunrise 188 and sunset time points. Details of the pre-dawn Fair and 189 sunset Maghreb prayer time points on the Islamic calendar 190 are available on the Islamic Finder website for Sharjah city, 191 United Arab Emirates (UAE) (https://www.islamicinder. 192 ora/world/united-arab-emirates/292672/sharjah-prayer-times 193 /). This showed that the length of fasting time for a speciic 194 day (time between the Fair and Maghrib prayer times) was 195 787 min (approximately 13 h), which was close to the length 196 of fasting time calculated using the solar calendar (sunrise 197 198 and sunset time points) for the month of Ramadan in Sharjah during the Islamic/Hijri year 1429 AH Georgian calendar 199 year of 2008 in Sharjah city/UAE. 200 According to the meteorological deinition, the seasons 201

begin on the irst day of the months that include the equi-202 noxes and solstices: spring runs from March 1 to May 31; 203 summer runs from June 1 to August 31; fall (autumn) runs 204 from September 1 to November 30, and winter runs from 205 December 1 to February 28. When the lunar month of Ram-206 207 adan falls in two solar months, Ramadan is classiied according to the solar month with a signiicant number of days 208 (e.g., Ramadan in 2009 started on the 22nd of August. Thus, 209 Ramadan was classiled to run in autumn not summer). Start 210 day for the month of Ramadan, with its corresponding solar 211 day was taken from the website: https://www.timeanddat 212 e.com/holidays/us/ramadan-begins. 213

214 Data synthesis and statistical analyses

Combined means were computed when the study included
subgroups (e.g., healthy body weight, overweight, obese)
with diferent means and SD for each subgroup. See the supplementary ile (Supp. 1) for equations needed to recreating
a mean from two or more groups [24]. P values for these

combined subgroups means were calculated. All descriptive and
inferential tests were performed using STATA software (Stata,
M.P., 15.0. College Station, TX: StataCorp, 2017).220221222

We performed a series of one group (pre-post) meta-223 analyses using pre- and post-means model, sample size, and P-224 values (paired groups). Hedges' g value was used for efect size 225 measurement. An efect size of ≤ 0.2 was described as a small 226 efect, an efect size around 0.5 as a medium efect, and an efect 227 size around 0.8 was as a large efect. A Hedges' gvalue of one 228 229 (1) indicates the two groups difer by one SD, a g value of two indicates they difer by two SDs, and so on. Standard deviations 230 231 are equivalent to z scores (1 SD = 1 z score). In addition to 232 Hedges' g values, forest plots were used to present the results 233 graphically and to illustrate point estimates of the efect size and 234 95% conidence interval (CI). Random-efects modeling was used 235 for all analyses. Using random-efects modeling, we, therefore. 236 assume that there is not only one true efect size, rather, a distribution of true efect sizes. We, therefore, sought to estimate 237 the mean of this distribution of true efect sizes. Sensitivity 238 analyses were performed for body weight by removing one 239 study at a time to determine if the pooled efect size was arbitrary 240 or inluenced by one single study in all of the components. 241

Tau (τ^2) and r^2 statistics were used to assess the hetero-242 geneity of the solicited studies within and between studies. 243 respectively. Comprehensive Meta-Analysis version 3 [25] was 244 used for all analyses. Leave-one-out sensitivity analyses were 245 conducted by iteratively eliminating one study at a time to conirm any single study did not drive our meta-analysis indings. 246 Moderator analysis was performed using: subgroup analysis for 247 categorical variables (country, and season), and meta-248 regression for integer or decimal variables (age, the percentage 249 of male subjects, and fasting time per day). Com-puting τ^2 and 250 2 statistics were particularly vital to exam-ine heterogeneity due 251 to explainable causes, for example, the timing of data collection 252 before Ramadan month, and post fasting. Cochrane Handbook 253 for Systematic Reviews of Interventions was used to interpret τ^2 254 and $\frac{2}{26}$, 27]. For the $\frac{2}{3}$ a general guide to the interpretation of 255 256 r^2 is as follows: 0–40%: might not be significant; 30–60%: may 257 represent moderate heterogeneity; 50-90%: may represent 258 substantial heterogeneity; 75–100%: considerable 259 heterogeneity. For τ^2 because it represents the absolute value 260 of the real variance (heterogeneity), the statistical significance 261 was used. 262

The estimating algorithm for a random-efects metaregression model was obtained using methods of moments [28].

263

264

265

266

267

268

269

270

271 272

The beta-coeicients and *P* values resulting from mod-eling were reported. Graphical plots are presented to aid the interpretation of the results visually. Funnel-plot based analysis was used to detect publication bias. Furthermore, the nonparametric trim and ill method was used to conirm indings [29]. Subgroup analysis for body weight change was performed to investigate diferences between countries. We

Table 1 Characteristics and indings of the included studies on the efect of Ramadan diurnal intermittent fasting on body weight

Authors	Year	Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Fedail et al. [104]	1982	Sudan/Africa	Prospective	24 (83.3)	30	69.5	67.7	There was a signiicant	4
Azizi and Rasouli [105]	1987	Iran/Asia	observational ^a Prospective observational ^a	9 (100)	(21–40) (23–54)	65.4	61.6	fall in body weight There was a signiicant reduction in body weight	3
Takruri [67]	1989	Jordan/Asia	Prospective observational ^a	137 (66)	(19–59)	67.64	65.54	The results showed a signiicant loss in body weight	4
El Ati et al. [106]	1995	Tunisia/Africa	Prospective observational ^a	16 (0)	(25–39)	59.3	58.9	No signiicant changes were observed in body weight	3
Adlouni et al. [107]	1997	Morocco/Africa	Prospective observational ^a	32 (100)	(25 -50)	69.61	67.83	The results showed a signiicant loss in body weight	3
Finch et al. [108]	1998	England/Europe	Prospective observational ^a	41 (37)	35.3 ± 1.8 (19–63)	71	70.7	There were no signii- cant changes in body weight over Ramadan	4
Maislos et al. [109]	1998	Israel/Asia	Prospective observational ^a	22 (64)	24 (20–45)	68	67	No signiicant changes were observed in body weight	4
Bilto [110]	1998	Jordan/Asia	Prospective observational ^a	74 (81)	(20–48)	72	70.8	The results showed a signiicant loss in body weight	4
Kayıkçıoglu [30]	1998	Turkey/Asia	Prospective observational ^a	32 (100)	22.3 ± 2.9	71.6	70.7	The results showed a signiicant loss in body weight	3
Akanji et al. [111]	2000	Kuwait/Asia	Prospective observational ^a	49	47.6 ± 10.8	81.8	81.5	There were no signii- cant changes in body weight over Ramadan	4
Ramadan [37]	2002	Kuwait/Asia	Prospective observational ^a	16 (100)	NR	80.16	79.1	There were no signii- cant changes in body weight over Ramadan	2
Afrasiabi et al. [112]	2003	Iran/Asia	Prospective observational ^a	16 (100)	NR	79.8	78.6	There were no signii- cant changes in body weight over Ramadan	2
Kassab et al. [113]	2003	Bahrain/Asia	Prospective observational ^a	44 (0)	(18–45)	79.25	78.6	There were no signii- cant changes in body weight over Ramadan	3
Fakhrzadeh et al. [114]	2003	Iran/Asia	Prospective observational ^a	91 (55)	19.9 ± 1.8	63.01	62.17	Fasting caused a sig- niicant reduction in weight in men	4

31 2020-3-7:Dispatch

Table 1	(continued)
---------	-------------

Authors	Year	Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Yucel et al. [39]	2004	Turkey/Asia	Prospective	38 (55)	32.5 ± 12.5 (20–45)	68.67	68.64	No statistically sig- niicant diference was found before and after Ramadan	4
Rahman et al. [115]	2004	Bangladesh/Asia	Prospective observational ^a	20 (100)	38.27 ± 4.07	64.05	62.07	Body weight decreased signiicantly during Ramadan compared with before Ramadan	3
Kassab et al. [116]	2004	Bahrain/Asia	Prospective observational ^a	46 (0)	22±2 (18–45)	80.8	80.1	There were no signii- cant changes in body weight over Ramadan	4
Aksungar et al. [117]	2005	Turkey/Asia	Prospective observational ^a	24 (50)	(21–35)	72.69	72.58	There were no signii- cant changes in body weight over Ramadan	4
Farshidfar et al. [118]	2006	Iran/Asia	Pre-experimental	21 (NR)	NR	58.77	57.94	Decrements in mean weight of cases at the end of Ramadan were statistically signiicant	2
Al-Numair [119]	2006	Saudi Arabia/Asia	Prospective observational ^a	45 (100)	(30 -45)	85.5	83.2	The results showed a signiicant loss in body weight	3
Ziaee V et al. [120]	2006	Iran/Asia	Cohort	81 (51)	22.7 ± 2.3 (20–35)	62.4	61.2	The results showed a signiicant loss in body weight	4
Dewanti et al. [121]	2006	Indonesia/Asia	Prospective observational ^a	37 (100)	39±10 (17–62)	64.5	63	The results showed a signiicant loss in body weight	3
Subhan et al. [97]	2006	Pakistan/Asia	Case–control longitu- dinal	46 (100)	24.2 ± 6.4 (16–41)	70.48	69.96	Body mass in Ramadan was signiicantly lower relative to pre-Ram- adan	3
Salehi and Neghab [122]	2007	Iran/Asia	Prospective observational ^a	28 (100)	23.4 (20–26)	84.1	79.03	Fasting resulted in a signiicant decrease in the mean values of body weight	3
Al Hourani and Atoum [123]	2007	Jordan/Asia	Prospective observational ^a	57 (0)	21.6 ± 4.14 (18–29)	57.5	56.9	Body weight decreased signiicantly during Ramadan fasting	3

31 Journa Larg 39

2216: NoArticle

26:Page

2216:CodeMS

Table 1 (continued)

Authors	Year	Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Mansi [124]	2007	Jordan/Asia	Cohort	70 (NR)	21 ± 1.6	76.64	72.66	th week of Ramadan was signiicantly lower than pre-Ramadan values	2
Mansi and Amneh [124]	2007	Jordan/Asia	Prospective a observational	42 (100)	21.3 ± 1.6	76.64	72.66	Body weight was sig- niicantly lower than pre-Ramadan values	3
Moosavi et al. [125]	2007	Iran/Asia	Cohort	117 (66)	23.9 (26.2–29.6)	67.6	67.1	There was a signiicant diference between the pre- and post- Rama- dan mean weights	4
Ibrahim et al. [126]	2008	UAE/Asia	Prospective a	14 (64)	(25–58)	70.5	69.1	There were no signii- cant changes in body weight over Ramadan	4
Shariatpanahi et al. [127]	2008	Iran/Asia	Prospective observational ^a	55 (100)	34.1 ± 8.9 (34 -61)	80.69	78.73	The results showed a signiicant loss in body weight	3
Lamri-Senhadji et al. [42]	2009	Algeria/Africa	Prospective	46 (48)	24±3	61.87	61.39	There were no signii- cant changes in body weight over Ramadan	4
Norouzy et al. [128]	2010	Iran/Asia	Prospective cohort	240 (66)	40 (18–70)	71.81	70.72	Ramadan fasting caused a signiicant reduction in body weight	4
Pathan and Patil [129]	2010	India/Asia	Prospective observational ^a	39 (100)	(25 -35)	61.9	60.56	The results showed a signiicant loss in body weight	3
Abedelmalek et al. [43]	2011	Tunisia/Africa	Case-control	9 (100)	22.1 ± 0.2	74	71.5	The body mass was signiicantly lower in the fourth week of Ramadan	3
Assadi et al. [59]	2011	Iran/Asia	Prospective observational ^a	58 (100)	40.7 ± 7.1	78.61	77.24	The results showed a signiicant loss in body weight	3
Ünalacak et al. [130]	2011	Turkey/Asia	Cross-sectional	20 (100)	27.4 ± 5.2	77.55	75.5	Signiicant weight reduction was observed in the study group	3

Table 1	(continued)
---------	-------------

Authors	Year Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Faris et al.[90] a	2012 Jordan/Asia	Cross-sectional	50 (42)	32.7 ± 9.5 (18–51)	71.82	70.58	Body weight was sig- niicantly lower during Ramadan as compared with before Ramadan	4
Faris et al. [131] b	2012 Jordan/Asia	Cross-sectional	50 (42)	32.7 ± 9.5 (18–51)	72.5	71.7	The results showed a signiicant loss in body weight	4
Khattak et al. [78]	2012 Malaysia/Asia	Prospective observational ^a	20 (50)	NR	80.88	69.43	Weight was signiicantly reduced in obese individuals on day 21 of Ramadan	2
Shehab et al. [132]	2012 UAE/Asia	Prospective observational ^a	60 (60)	43.2 ± 9.4	78.58	77.63	The results showed a signiicant loss in body weight	4
Agoumi et al. [133]	2013 Spain/Europe	Cohort	55 (40)	(18–70)	77.45	76.67	Body weight decreased due to fasting in Ramadan	4
Develioglu et al. [45]	2013 Turkey/Asia	Prospective observational ^a	35 (100)	35.86 ± 11.07 (20–59)	77.17	75.97	Body weight decreased signiicantly dur- ing Ramadan fasting compared with before fasting	3
Haouari-Oukerro et al. [134]	2013 Tunisia/Africa	Prospective observational ^a	38 (100)	20.8 ± 1 (18–23)	70	68.7	There were no signii- cant changes in body weight over Ramadan	3
Hosseini et al. [135]	2013 Iran/Asia	Semi-experimental	11 (0)	(20–45)	71.1	69.9	The results showed a signiicant decline in body weight at the end of Ramadan	3
Norouzy et al. [36]	2013 Iran/Asia	Prospective observa- tional	240 (66)	40.1 ± 0.7 (18–70)	71.81	70.72	There was a signiicant reduction in body weight in almost all subjects	4
Rohin et al. [136]	2013 Malaysia/Asia	Prospective observational ^a	46 (30)	33.04 ± 4.57 (25–40)	66.16	64.81	There was a signiicant reduction in body weight	4
Sayedda et al. [137]	2013 India/Asia	Prospective observational ^a	20 (100)	24.65 ± 4.38 (19–32)	71.1	68.92	Body weight was found to be signiicantly decreased	3

Table 1	(continued)
---------	-------------

Authors	Year Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Alzoghaibi et al. [44]	2014 Saudi Arabia/Asia	Prospective observational ^a	8 (100)	26.6 ± 4.9 (25–35)	69.1	66.3	There were no signii- cant changes in body weight over Ramadan	3
Cansel et al. [138]	2014 Turkey/Asia	Prospective cohort	40 (60)	29.3 ± 5.9 (19–40)	61.8	62.3	There were no signii- cant changes in body weight over Ramadan	4
Celik et al. [139]	2014 Turkey/Asia	Prospective observational ^a	42 (100)	35 ± 8.9	80.4	78.8	Ramadan fasting in healthy adult men was associated with signii- cant decreases in body weight	3
Feizollahzadeh et al. [74]	2014 Iran/Asia	Prospective observational ^a	70 (100)	47.88 (30–70)	79.77	77.93	There was a signiicant reduction in body weight	3
Hassan and Isawumi [140]	2014 Nigeria/Africa	Prospective observational ^a	60 (60)	42.3 ± 16.7	65.92	65.29	There were no signii- cant changes in body weight over Ramadan	4
McNeil et al. [141]	2014 Canada/ North America	Prospective a observational	20 (100)	(20–35)	90.35	88.55	No signiicant diference in body weight was noted	3
Salahuddin and Javed [142]	2014 India/Asia	Case-control	30 (NR)	(35–65)	60.47	58.52	There were no signii- cant changes in body weight over Ramadan	2
Begum et al. [143]	2015 Bangladesh/Asia	Prospective	60 (100)	(24–28)	61.51	58.97	Mean body weight sig- niicantly decreased	3
Gnanou et al. [144]	2015 Malaysia/Asia	Prospective observational ^a	20 (100)	(19–23)	63.07	61.55	Subjects experienced a signiicant decrease in body weight	3
Hosseini and Hejazi [145]	2015 Iran/Asia	Quasi-experimental	25 (52)	NR	69.3	68.79	The results showed a signiicant decline in body weight	2
López-Bueno et al. [146]	2015 Spain/Europe	Longitudinal	62 (0)	33.6 ± 12.7 (18–61)	67.2	66.1	There was a signiicant reduction in total body weight values	3
Sijavand et al. [62]	2015 Iran/Asia	observational ^a Prospective	89 (57)	^(20–50) 34.97	77.59	76.62	body weight decreased A week after Ramadan,	4
							compared to a week before Ramadan	

Table 1 (continued)
-----------	------------

:Journa	3	Authors	Year	Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Larg 39		Suriani et al. [147]	2015	Malaysia/Asia	Prospective observational ^a	84 (0)	39.8 ± 10.3	78.76	77	The results showed a signiicant decline in body weight	3
22	-	Talib et al. [148]	2015	Qatar/Asia	Cohort	45 (100)	37 ± 7.2 (27–56)	94.67	94	The results showed a signiicant decline in body weight	3
216:NoArticle		BaHammam et al. [149]	2016	Saudi Arabia/Asia	Prospective observational ^a	80 (100)	26.6 ± 4.9 (20–35)	67.5	66.3	The results showed a signiicant decline in body weight	3
U		Ganjali et al. [150]	2016	Iran/Asia	Quasi-experimental	45 (58)	37.6 ± 6.9 (25 -58)	81.47	79.62	The results showed a signiicant decline in body weight	4
26:Page		Syam et al. [38]	2016	Indonesia/Asia	Longitudinal	43 (16)	34.19 ± 11.25	59.82	58.95	By the 28th day of Ramadan, it was found that the body weight had decreased signii- cantly	4
2216 :C		Nugraha et al. [151]	2017	Germany/Europe	Prospective observational ^a	25 (100)	26.12 ± 0.98	77.82	76.04	Participants experienced a signiicant loss in body weight	3
odeMS		AbdulKareem et al. [152]	2017	Iraq/Asia	Case-control	12 (25)	37.5 ± 10.81 (24–57)	67.2	66.1	Healthy subjects showed a signiicant decrease in the body weight	4
		Alsubheen et al. [80]	2017	Canada/North America	Prospective observational ^a	9 (100)	32.2 ± 7.8	82.9	80.8	Signiicant reduction in body weight was observed at the end of Ramadan	3
		Bakki et al. [153]	2017	Nigeria/Africa	Cross-sectional	75 (62.6)	25±2 (18–30)	59.1	56.8	No signiicant diference in body weight was noted	4
		Khan et al. [154]	2017	Pakistan/Asia	Prospective observational ^a	35 (51)	21.66 ± 0.68 (21 -23)	60.49	60.46	No signiicant diference in body weight was noted	4
Dispato		Kiyani et al. [155]	2017	Pakistan/Asia	Prospective observational ^a	80 (62.5)	20.5 (18–24)	62.7	62.3	No signiicant diference in body weight was noted	4
h : 7-3-2020		Latiri et al. [156]	2017	Tunisia/Africa	Prospective observational ^a	29 (100)	27±1 (20–40)	81.6	81.2	There was no statisti- cally signiicant efect of Ramadan fasting o body weight	3 n

Table 1 (continued)
-----------	------------

Authors	Year	Country/continent	Study design	Sample size <i>n</i> (% male)	Mean age/age range (year)	BW before Ramadan (kg)	BW after Ramadan (kg)	Discussion	Quality assessment score
Malekmakan et al. [60]	2017	Iran/Asia	Semi-experimental	93 (52.7)	37.2 ± 7.9 (25–57)	71.6	70.4	The results showed a signiicant decline in body weight	4
Mohammadzade et al. [49]	2017	Iran/Asia	Prospective observa- tional	30 (100)	29.44 ± 7.4 (20–35)	82.73	80.43	The results showed a signiicant decline in	3
Norouzy et al. [61]	2017	Iran/Asia	Prospective observa- tional	12 (50)	54.6 ± 4	67.4	67.5	body weight There was no statisti- cally signiicant efect of Ramadan fasting on body weight	4
Ongsara et al. [157]	2017	Thailand/Asia	Prospective observa- tional	65 (32)	20.82 ± 1.14 (19–24)	55.7	55.1	There was no statisti- cally signiicant efect of Ramadan fasting on body weight	4
Pallayova et al. [54]	2017	Qatar/Asia	Prospective observa- tional	18 (28)	24 (21–27)	64.6	62.2	There was no statisti- cally signiicant efect of Ramadan fasting on body weight	4
Roy and Bandyopadhyay [158]	2017	India/Asia	Prospective observational ^a	36 (100)	22.73 ± 1.56 (20–25)	57.5	55.53	A slight but statistically insigniicant decrease in body weight fol- lowing the month of Ramadan fasting	3
Al-Barha and Aljaloud [35]	2018	Saudi Arabia/Asia	Quasi-experimental before/after design	44 (100)	27.7 ± 5.8 (18–39)	70	69.6	There was no statisti- cally signiicant efect of Ramadan fasting on body weight	3
Nachvak et al. [21]	2018	Iran/Asia	Observational	152 (100)	39.35 ± 10.7 (21–63)	76.33	74.22	The results showed a signiicant decline in body weight	3
Prasetya and Sep- warobol [55]	2018	Thailand/Asia	Prospective observational ^a	27 (100)	24.3 ± 3.7 (19–40)	65.33	64.23	Results demonstrate reductions in body weight	3
Faris et al. [40]	2019	UAE/Asia	Prospective	57 (61)	36.2 ± 12.5	89.4	88.2	A signiicant decrease in body weight was observed	4
Haghighi et al. [159]	2019	Iran/Asia	Semi-experimental	25 (0)	(21–51)	67.62	67.29	There was no statisti- cally signiicant efect of Ramadan fasting on body weight	3

d) Table 1							
Authors	Year Country/continent	Studydesign	Mean age/age range			Discussion	Quality
		Samplesize %/mmale)	« (year)	BW beforeF dan(kg)	ama BW afterRamad	an (kg)	assessments core
Jarrar et al. [160]	2019 UAE/Asia	Randomized,contr 36 (14)		60.5	59.9	A signiicant decrease	4
Rahbar et al. [161]	2019 Iran/Asia	Prospectiv 34 (100)	²1.±1.86(18-47) 35 ± 11	6274.	9373.	in body weight wasobserved A signiicant decrease	б
Alam et al. [57]	2019 Pakistan/Asia	a observational oper- abalonguideal 78 (100)	(16–64) (20–85)	567.	763.	A significant reduction	т
		follow-up				h boy wagt wastbandingards- parasative of the second manufacture of th	
Not reported by bộdy weight, <i>BW</i>	study authors not reported						

achieved this subgroup analysis if three or more studies were 273 available from any given country. 274

Critical appraisal of studies (quality assessment) 275

Two reviewers (MF and HJ) independently assessed the 276 methodological quality of studies using a pre-designed 277 standardized checklist consisting of six items in terms of 278 sample size and sampling technique, standardization of data 279 collection, appropriateness of statistical analyses, quality of 280 reporting results, and generalizability. The appraisal scores 281 range between zero and six, with scores of 0-2 corresponds 282 to low quality, 3-4 medium quality, and 5-6 high quality. 283 The inal quality score was set for each study by consensus 284 after discussion [19]. (See Supp. 2). 285

286

305

Results

Of 2253 initially retrieved studies, eighty-ive studies on the 287 efects of RDIF on body weight met the inclusion criteria 288 and were subjected to meta-analysis; the stages of evalu-289 ation and exclusion of the identiied studies are presented 290 in Fig. 1. The eighty-ive studies included a total of 4176 291 participants. Details of study sample size, sex, study design, 292 age, and signiicant indings related to body weight are found 293 in Table 1. All included studies used a pre-post model to 294 report changes in body weight. Approximately 70.7% of 295 participants were male, and the median age was 30.0 years 296 (range of 16-80 years). The mean fasting length during 297 Ramadan for all included studies was 837 min, with a SD of 298 91; range between 667 and 1070 min per day. 9

Critical appraisal of studies or quality assessment revealed that 78 studies (91.8%) were of medium-quality, and the remaining seven studies (8.2%) were of low-quality studies (Table 1). The mean quality score was 3.4, with a SD of 0.7.

A meta-analysis of body weight

Characteristics of the selected studies regarding the num-306 ber of studies (K), the number of subjects (N), the mean 307 age of study subjects, percent of male subjects, fasting time 308 expressed in minutes per day are summarized in Table 2. 309 Visual inspection of the precision plots indicated no bias in 310 any of the selected studies (Fig. 2). Meta-analytic pooling for 311 the body weight was performed and results were expressed 312 as K, N, Hedges' g value, 95% CI and l^2 , and found to be: 313 (K = 85, N = 4176, -0.360, 95% CI - 0.405 to - 0.315,314 l^2 = 45.6%) (Fig. 3), this efect size translates to difference 315 in means of - 1.022 kg (95% CI - 1.164 to - 0.880 kg). The 316 results of sensitivity analyses revealed that the pooled efect 317 size was robust and was not inluenced by one single study. 318

		efectofRamadandiurnal	
	and statistical values for the three moderators for the	intermittent fasting on Moderators	
p s	$\frac{2}{c}$ N d2 τ Number Mean age (year) Overall % male Fasting time (min-ute/day)	OverallHedges' age Sex (%omale)g(95%Cl)	Fasting time/day
	30.±7.i3 70. 837.±87.69787 ⁰ 648	$\beta_{1,001,-1-0000}, qdi dh diska suppojd_{10}, \rho 0.315 \end{pmatrix}$	
identis the number of Kilarotesherumberof N 2 Mnar and om-efects meta-	studies a participant b ^{percentageofordiation} across studies due to heterogeneity rather than chance [162] analysistle ectablyovariation among the efects observed in diferent studies (between-	studyvariance)isreferred to as tau-squared [163]	

ىد e

Moderator analysis for body weight

Moderator analysis was performed for body weight (Table 2). 320 Results indicated that age ($\beta = 0.0009$, P = 0.66) and sex ($\beta =$ 321 322 -0.0002, P = 0.70, as %male) of the fasting people were not 323 significant moderators for changes in body weight (Figs. 4. 5), respectively. However, fasting time (min/ day) was a 324 significant moderator in explaining variation in body weight 325 326 change ($\beta = -0.0003$, P = 0.049) (Fig. 6), suggesting that the longer the fasting time duration during Ramadan, the more 327 substantial the reduction in body weight change at the end 328 of Ramadan. 329

Subgroup analysis was performed to investigate diferences in body weight between countries (Fig. 7). Results of this analysis revealed that nine countries (Iran, Jordan, Turkey, India, Malaysia, Pakistan, Saudi Arabia, Tunisia, and UAE) contributed three or more studies, independently, in measuring body weight change during RDIF (Table 3). The greatest reduction was observed in Malavsia (Hedges' g value, 95%CI) (- 0.519,- 0.696 to - 0.341), followed by India (- 0.486, - 0.713 to - 0.259), UAE (- 0.449, - 0.603 to - 0.294), Tunisia (- 0.424, - 0.842 to - 0.006), Iran (- 0.374, - 0.430 to - 0.264), Pakistan (- 0.347, - 0.476 to - 0.218), Turkey (- 0.325, - 0.560 to - 0.090), Jordan (- 0.291,-0.381 to - 0.200), and Saudi Arabia (- 0.148, - 0.294 to -0.002) (Fig. 7).

Subgroup analysis for the season during which the Ramadan study fell revealed that the most considerable reduction in body weight was reported in summer (- 0.376, 95%CI - 0.437 to - 0.314), followed by fall (autumn) (- 0.341, 95%CI - 0.419 to - 0.263), spring (- 0.329, 95% CI - 0.562 to - 0.095) and, inally, winter (- 0.298, 95%CI - 0.419 to - 0.177) (Fig. 8).

Discussion

This systematic review and meta-analysis highlighted the efect of RDIF on body weight and demonstrated that 353 RDIF incurs a signiicant, but small, reduction. Further, the 354 present study shows the impact of variable moderators, 355 such as age, sex, and, for the irst time, the efect of fasting 356 time duration, season, and country on body weight 357 change at the end of the fasting month. 358

Ramadan diurnal intermittent fasting (RDIF) may be one of the most extensively studied types of religious fasting [30, 31], with a vast number of original research, system-atic reviews and meta-analyses demonstrating that RDIF is associated with variable changes in body weight [32-34], body composition [33, 35-37] and fat mass [38, 39], with an emphasis on visceral fat [40], serum lipids [34, 41, 42], immunomodulatory responses [43-47], and inlammatory and oxidative stress changes [46, 48-53]. Furthermore, some

352

359

360

361

362

363

364

365

366

367

351

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Fig. 2 Precision plot for studies included in the meta-analysis of body weight change induced by Ramadan fasting

work has reported that RDIF afects cardiometabolic risk factors, including insulin sensitivity [54, 55], and glucose homeostasis [56], and blood pressure [57–62] in an inconsistent manner.

Azizi [7] reported that RDIF yielded changes in body 372 weight that varied between individuals, ranging from weight 373 gain to weight loss, depending on total caloric intake dur-374 ing the fasting night hours in comparison to the pre-fasting 375 intakes [7]. However, caloric intake before and during Ram-376 377 adan month was not analyzed in the current meta-analysis, which therefore warrants further research and analysis, as it 378 represents a conceivably inluential factor on body weight 379 change at the end of the fasting month. In their systematic 380 review and meta-analysis. of data from thirty-ive stud-381 ies, including 1234 subjects, Sadeghirad and colleagues 382 [32] revealed that body weight change induced by RDIF 383 was mostly reversed after Ramadan, gradually returning to 384 pre-Ramadan status [32], indicating that body weight loss 385 caused by Ramadan fasting is transient and elicits only a 386 short-term efect. The same inding was reported by Fer-387 nando and colleagues [33] in their systematic review and 388 meta-analysis on seventy studies, which included 2947 sub-389 jects; moreover, the authors also found that overweight or 390 obese fasting people exhibited a more pronounced reduc-391 tion in body weight and body fat than healthy-weight peo-392 ple. However, the latter meta-analysis has been criticized 393 because the authors included studies on physical activity 394 during Ramadan month in their analysis [63-66], and many 395 of the collected articles were not included in the inal anal-396 ysis (e.g., the Takruri study [67]). Further, neither of the 397

aforementioned meta-analyses examined the relationship398between body weight changes and moderator confounding399factors, such as age, sex, fasting time, season, and country400of study, which may conceivably impact body weight401changes at the end of the fasting month.402

The importance of body weight is based on the fact it 403 represents a predisposing factor and associated risk of CVD 404 and type 2 diabetes, in addition to other harmful metabolic 405 abnormalities, such as nonalcoholic fatty liver disease [68]. 406 Increased body weight is usually accompanied by increased 407 central obesity and diferent metabolic disorders in non-408 athletic people, such as insulin resistance, hypertension, and 409 dyslipidemia. Therefore, dietary strategies and interventions 410 that aid in alleviating and treating obesity and lowering body 411 weight are of growing, contemporary importance. Given that 412 RDIF is associated with body weight loss [32] and the 413 alleviation of inlammatory and oxidative stress states [46], 414 RDIF could viably represent a short-term pre-ventive 415 measure against metabolic syndrome in healthy people. 416

The small reduction in body weight reported in this meta-417 analysis might help in explaining the slight decline reported 418 inlammatory and oxidative stress markers in the 419 accompanied by RDIF, as indicated in a previous meta-420 analysis [46]. It is well documented that a reduction in body 421 weight is associated with the amelioration of inlammation 422 and oxidative stress levels in overweight and obese peo-ple 423 [69, 70]. Further, the presence of metabolic syndrome, for 424 which increased body weight expressed by high BMI 425

426

Study name

Statistics for each study

Hedges's g and 95% CI

Fig. 3 Hedges' *g* value with 95%, CI revealed signiicant small (-0.360) reduction in body weight was induced by Ramadan fasting. Heteroge-neity statistics: 95% CI -0.405 to -0.315, $l^2 = 45.6\%$. Hedges' *g* value is considered small when value = 0.2, medium = 0.5, large = 0.8

Fig. 5 Regression analysis for changes in body weight according to the sex of fasting subjects and Hedges' g values for the 85 studies (4176 sub-jects) included in the meta-analysis. The correlation was statistically non-significant (β = - 0.0002, Pvalue = 0.71)

represents the irst indicator, was found to be associated 427

with lower plasma adiponectin levels [71]; indicating adi-428

pose tissue dysfunction and a 2-4 times increased risk of 429

430 both the development of type 2 diabetes [72] and cardiovas-

- 431 cular disease [73]. Moreover, several reports have indicated
- that RDIF is associated with variable incremental levels 432

433 in adiponectin in fasting people [50, 74-76]. Recently, it was reported that RDIF is associated with a signiicant reduction in the visceral fat surface area, as measured by magnetic resonance imaging, in 57 overweight and obese subjects, concomitant with substantial reductions in the pro-inlammatory cytokines 1L-6, and TNF- α , and a signiicant

increase in the anti-inflammatory cytokine IL-10 [40]. 439 The same samples revealed that RDIF was associated with 440 enhanced expression of the anti-oxidant genes nuclear fac-441 tor erythroid 2 related factor 2, superoxide dismutase 2, 442 and mitochondrial transcription factor A [72]. Furthermore, 443 Fernando and colleagues, in their systematic review and 444 meta-analysis on the efect of RDIF on body fatness, found 445 a significant reduction in fat percentage between pre-Rama-446 447 dan and post-Ramadan in people with overweight or obesity (- 1.46, 95% CI - 2.57 to - 0.35%, P = 0.010), rather than 448 in normal-weight fasting subjects [33]; implying that RDIF 449 elicits a pronounced protective efect against the develop-450 ment of metabolic syndrome in overweight/obese subjects, 451 for which increased body fatness is the core etiopathologi-452 cal condition [77]. 453

Given that Ramadan fasting represents a form of time-454 restricted feeding (TRF), as reported by Patterson and Sears 455 [18]; indings of the current review are consistent with other 456 research on human and animal intermittent energy restric-457 458 tion and TRF, for which a growing evidence base is demonstrating its beneits on glucose and lipid homeostasis in 459 the short-to-medium term, even in the absence of signiicant 460 total daily caloric restriction (reduction in 25-40% of total 461 daily caloric intake). During Ramadan, the vast majority 462 of published research has revealed a lack of signiicant 463 changes in total daily caloric intake in comparison with the 464 465 pre-fasting caloric intake [78-80]. One of the mechanisms conceivably explaining how TRF, including RDIF, may 466 improve body weight regulation is related to the extended 467 fasting duration [81]. It has been reported that extended 468

fasting duration can trigger the mobilization of free fatty 469 acids, increase the production of ketones, and increase 470 fat oxidation [82]. Besides, evidence from rodent-based 471 models suggests that reducing the daily eating duration 472 can elicit beneicial efects on body weight, body 473 composition, and metabolism [83, 84]. Furthermore, such 474 beneicial efects appear to be attainable even without a 475 reduction in daily energy intake [83, 84]. 476

Total energy expenditure (TEE) and resting metabolic477rate (RMR) play a fundamental role in determining body478weight changes [85]. In the context of RDIF, few studies479have investigated the impact of RDIF on RMR and TEE480without reporting significant changes [86, 87].481

Variable changes in body compartments have been 482 reported in fasting people during the month of Ramadan, 483 which includes body water [88], fat-free mass [36], body fat 484 mass [38, 64, 89, 90] including visceral fat [40]. These 485 variable changes in body composition associated with 486 Ramadan fasting are supposed to be afected by variable 487 factors and to be determined by cultural, seasonal, geo-488 graphical, and social [91] as well as the gut microbiome, 489 genetic, and epigenetic factors [92]. 490

The findings of the current meta-analysis are con-cordant 491 with that of Sadeghirad and colleagues [32] who reported 492 that RDIF resulted in a small signiicant weight loss (- 1.24 493 kg, 95%CI - 1.60 to - 0.88 kg), with sub-stantial reductions 494 in body weight for both men (- 1.5 kg) and women (- 0.92 495 kg), respectively. The lack of difer-ence in the significance of 496 body weight loss for both sexes is in agreement with our 497 inding that sex did not work as a 498

Fig. 6 Regression analysis for changes in body weight according to fasting minutes/day of fasting subjects and Hedges' g values for the 85 stud-ies (4176 subjects) included in the meta-analysis. The correlation was statistically significant ($\beta = -0.0003$, P value = 0.049)

Regression of Fasting Time/Day on Hedges's g

Low Low <thlow< th=""> <thlow< th=""> <thlow< th=""></thlow<></thlow<></thlow<>	g	Group by	Study name			Statistics f	or each s	tudy			Hedges's g and 95% Ci
Fig. 7 Hodges: gradues in the set of the	c	Country		Hedges's	Standard	Variance	Lower	Upper	7.Value	-Value	
Fig. 7 Hedges (gradual) is a set of the s	A	Igeria	Lamri-Senhadji et al 2009	-0.243	0.147	0.022	-0.532	0.045	-1.654	0.098	
Fig. 7 Hodges 'gradues fig. 10 is	A	Ugeria	Kaush at al 2002	-0.243	0.147	0.022	-0.632	0.045	-1.664	0.098	
The matrix of the state of the sta	8	iahrain	Kassab et al 2003	-0.286	0.145	0.023	-0.361	0.208	-0.527	0.598	
Formation The second of the seco	8	lahrain Ianoladesh	Rahman et al 2004	-0.177	0.105	0.011	-0.382	0.028	-1.691	0.091	
Fig. 7 Heighes: grybues for experimental fill of the second secon	6	angladesh		-0.834	0.252	0.063	-1.327	-0.340	-3.309	0.001	
Image: The set of the se	c	anada Canada	Alsobheen et al 2017 McNeil et al 2014	-0.314	0.384	0.147	-1.763	0.118	-2.632	0.164	
Fig. 7 Hedges: granue of the second s	C	lanada Ingland	Finch at al 1998	-0.691	0.341	0.116	-1.259	0.077	-1.734	0.083	
Image: Numerical states of the second state state state state states of the second state state state state states of the second state state state state states s	Ē	ingland	The clar root	-0.074	0.153	0.024	-0.375	0.228	-0.485	0.028	
1 1	G	≇ermany ≩ermany	Nugraha et al 2017	-1.078	0.246	0.061	-1.561	-0.695	-4.373	0.000	
Tig Non-anti-strangent of the second sec	lr Ie	ndia	Begum et al 2016 Pathan and Patil 2010	-0.441	0.134	0.018	-0.703	-0.179	-3.302	0.001	
Total Numerican final 10 1	Ir	ndia	Roy and Bandyopadhyay 2017	-0.317	0.187	0.028	-0.645	0.011	-1.895	0.058	
Fig. 7 Hodges 'g value for the fight of t	ir Ir	ndia	Salahuddin and Javed 2014 Sayedda et al 2013	-1.051	0.180	0.032	-0.581	-0.519	-1.200	0.000	
Fig. 7 Hedges' gvalues in the start of a sta	le I	ndia	Deventi et al 2008	-0.488	0.116	0.013	-0.713	-0.259	-4.197	0.000	
The second of 201 with the second of	Ir	ndonesia	Syam et al 2016	-0.530	0.160	0.026	-0.844	-0.218	-3.305	0.001	
Fig. 7 Hodges' grvatues for the first of	ir ir	ndonesia tan	Afrasiabi et al 2003	-0.551	0.118	0.014	-0.782	-0.320	-4.671	0.000	
Fig. 7 Hedges 'granter at 201 is 10	le In	an	Assadi et al 2011	-0.029	0.130	0.017	-0.283	0.225	-0.228	0.821	
Total and set of the set	ie Ie	an	Fakhrzadeh et al 2003	-0.217	0.105	0.011	-0.423	-0.010	-2.060	0.039	
Fig. 7 Hedges' gradues for end of the set	le in	tan tan	Farshidfar et al 2006 Feizollahzadeh et al 2014	-1.018	0.262	0.069	-1.529	-0.502	-3.877	0.000	
Fig. 7 Hedges' gradues for the first of the	le	an	Ganjali et al 2016	-0.517	0.156	0.024	-0.823	-0.210	-3.305	0.001	
Tig Numerical of 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10	ie Ie	an an	Hosseini and Hejazi 2015	-0.382	0.203	0.041	-0.818	-0.023	-2.076	0.038	
Fig. 7 Hedges' gradues for the state of t	le le	tan tan	Hosseini et al 2013 Malekmakan et al 2017	-1.277	0.389	0.152	-2.040	-0.514	-3.279 -3.299	0.001	
Time Name of a bit is bit is a bit is bit is a bit is a bit is a	le le	an	Mohammadzade et al 2017	-0.661	0.197	0.039	-1.038	-0.265	-3.309	0.001	
Fig. 7 Hedges' graduation 1000 000	ie Ie	ian	Nachvak et al 2018	-0.310	0.094	0.009	-0.494	-0.128	-3.297	0.001	
Fig. 7 Hedges' gradues for the start of the	la la	ian Ian	Norouzy et al 2010 Norouzy et al 2013	-0.214	0.086	0.004	-0.342	-0.087	-3.294	0.001	
The set of th	ir.	an	Norouzy et al 2017	0.583	0.292	0.085	-0.010	1.135	1.927	0.054	
Image of the set of 1000 Image of the set of 10000 Image of the set of 100000 Image of the set of 1000000 Image of the set of 10000000 Image of the set of 100000000000000000000000000000000000	le le	tan	Rahbar et al 2019 Salehi and Neghab 2007	-0.289	0.171	0.029	-0.624	0.047	-1.688	0.091	
Fig. 7 Hedges' Water at 1917 000 000 000 000 000 000 Fig. 7 Hedges' Water at 1917 000 000 000 000 000 000 000 Fig. 7 Hedges' Water at 1917 000 000 000 000 000 000 000 000 Water at 1917 000	le.	an	Shariatpanahi et al 2007 Silayandi et al 2015	-0.463	0.140	0.020	-0.737	-0.188	-3.303	0.001	
Note of the set of the s	le	an	Ziaee et al 2006	-0.376	0.114	0.013	-0.599	-0.153	-3.300	0.001	
No. N	le le	taq	AbdulKareem et al 2017	-0.347	0.042	0.002	-0.430	-0.264	-8.171	0.000	
The second se	le.	aq vaal	Maising at al 1998	-0.625	0.297	0.055	-1.208	-0.042	-2.103	0.035	
Fig. 7 Hedges' gradue at 2010 000 000 000 000 000 000 000 None Marked at 2010 000 000 000 000 000 000 000 None Marked at 2010 000	la	rael		-0.409	0.215	0.048	-0.829	0.012	-1.904	0.057	
1.3 1.3 Line Theorem 1991 and 1991 a	ىل بار	ordan	Al- Hourani and Atoum 2007 Bilto 1998	-0.262	0.133	0.018	-0.522	-0.001	-1.969	0.049	
Image Marked 2007 Other of the start of the star	Ji Ji	ordan	Faris et al 2012a Earis et al 2012b	-0.280	0.142	0.020	-0.558	-0.001	-1.970	0.049	
Image: Market and Ameth 2007 0.51 0.51 0.51 0.51 0.55	Ji Ji	ordan	Mansi 2007	-0.247	0.120	0.014	-0.483	-0.012	-2.061	0.039	
13 Users 0.21 0.02 0.01 0.01 0.01 0.01 0.00	ال ول	ordan ordan	Mansi and Amneh 2007 Takruri 1989	-0.321	0.155	0.024	-0.628	-0.017	-2.087	0.039	
Normality Normality Original Difficulty Origi	J	ordan	Abar 1 -1 -1 2000	-0.291	0.046	0.002	-0.381	-0.200	-5.295	0.000	
Kuneti Operative at 1211 0.02	ĸ	Curvait	Ramadan 2002	-0.483	0.143	0.021	-0.952	0.010	-1.891	0.059	
Navyaw	ĸ	Cuwait Asisysis	Gnanou et al 2015	-0.323	0.126	0.016	-0.667	-0.078	-2.690	0.010	
Higher Higher Higher	N	falaysia.	Khattak et al 2012	-0.834	0.252	0.063	-1.327	-0.340	-3.309	0.001	
Marguin Advant ist at 1997 0.018 0.008 0.008 0.008 0.000 0.000 Name Mixed at 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Name Mixed at 2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Name Mixed at 2017 0.000	N	Aalaysia	Suriani et al 2016	-0.381	0.147	0.024	-0.813	-0.093	-2.689	0.010	
Normal 0478 0181	N N	falaysia forcoco	Adlouni et al 1997	-0.619	0.091	0.008	-0.696	-0.341	-5.725	0.000	
Fig. 7 Hedges' gradue fail 2017 0.027 0.018 0.008 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	N	Moro coo	Rathi et al 2017	-0.473	0.182	0.033	-0.831	-0.118	-2.596	0.009	
Nigerie Petitiste Name tal 2017 Other 0 400 <	N	ligeria	Hassan and Isawumi 2014	-0.100	0.118	0.013	-0.310	0.091	-1.248	0.423	
Paistan Kian et al 2017 0.278 0.016 0.025 0.026 0.007 0.007 Paistan Subhar et al 2017 0.278 0.016 0.025 0.056 0.007 0.000 0.000 Paistan Subhar et al 2017 0.266 0.027 0.168 0.025 0.000 0.000 0.000 0.000 Case Paistan Subhar et al 2017 0.266 0.027 0.010 0.028 0.000	N	ligeria Pakistan	Alam et al 2019	-0.122	0.085	0.007	-0.289	0.045	-1.428	0.153	
Titling Nother als 2001 0.207 0.111 0.010 0.010 0.010 0.000 0.000 Milling Submark als 2016 0.207 0.011 0.010 0.010 0.010 0.000 0.000 Other Malling Submark als 2016 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Other Malling Column Malling Column Malling Column Malling Column Malling Column Malling Malli	2	akistan	Khan et al 2017	-0.279	0.109	0.028	-0.610	0.051	-1.057	0.097	
Pairing Pairing 0.347 0.868 0.004 0.478 0.828 0.000 Data Tails et al 2017 0.268 0.002 0.228 0.000 0.288 0.000 Data Advances and Aplified 2016 0.001 0.117 0.018 0.227 0.028 0.000 0.118 0.288 0.010 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000 0.011 0.000	P	Pakistan Pakistan	Subhan et al 2006	-0.297	0.113	0.013	-0.598	-0.015	-2.065	0.039	
Caser Table at 2015 0.400 0.152 0.202 0.600 0.000 Save/ Arabia Al-barns and Ajalsuc 2016 0.002 0.144 0.002 0.204 0.000 Save/ Arabia Al-barns and Ajalsuc 2016 0.002 0.144 0.002 0.204 0.000 0.999 Save/ Arabia Alterphaile at 2014 0.012 0.100 0.204 0.204 0.204 0.999 0.440 0.999 Save/ Arabia Alterphaile at 2014 0.012 0.114 0.204 0.204 0.204 0.999 0.447 0.999 Save/ Arabia Alterphaile at 2016 0.021 0.314 0.024 0.204 0.999 0.447 0.999 Save/ Arabia Alterphaile at 2016 0.520 0.114 0.204 0.209 0.990 0.990 0.990 Sudam Fedal et at 1016 0.202 0.114 0.206 0.331 0.901 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.990 0.9	P	Pakistan Datar	Pallavova et al 2017	-0.347	0.066	0.004	-0.478	-0.218	-5.266	0.000	
Hase Alcenta and Algebour 2016 0.003 0.147 0.000 0.000 0.000 Suid Arabia Alcenta and Algebour 2016 0.002 0.202 0.200 0.000 0.000 Suid Arabia Alcenta and Algebour 2016 0.002 0.202 0.200 0.000 0.000 Suid Arabia Balanceman et al 2016 0.012 0.001 0.000 0.000 0.000 Suid Arabia Balanceman et al 2016 0.002 0.200 0.000 0.000 Suid Arabia Diamono et al 2016 0.002 0.000 0.000 0.000 Suid The allows Concortication et al 2017 0.020 0.000 0.000 0.000 Suidant The allows Concortication et al 2017 0.020 0.020 0.000 0.000 0.000 Suidant The allows Concortication et al 2017 0.020 0.020 0.000 0.000 0.000 0.000 Considered small When values Concortication et al 2017 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000	a	Datar	Talib et al 2015	-0.400	0.152	0.023	-0.699	-0.102	-2.626	0.009	
Build Atabia Sudd Atabia Sudd Atabia Sudd Atabia Bakamam et al 2016 0.237 0.120 0.120 0.120 0.020 0.120 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.000 0.020 0.000 0.020 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000	s	latar Saudi Arabia	AL-barha and Aljaloud 2018	-0.002	0.127	0.015	-0.292	0.288	-0.013	0.990	
Staudi Arabia Susci Arabia Spain Batamman et al 2016 0.123 0.111 0.026 -0.244 0.265 Spain López-Bueno et al 2016 0.223 0.114 0.265 0.960 0.800 Spain Agoumi et al 2015 0.252 0.056 0.114 0.265 0.800 0.800 Spain Agoumi et al 2015 0.056 0.118 0.021 0.803 0.233 0.800 Sudar Fedat et al 2017 0.124 0.014 0.225 0.020 0.800 Sudar Trailand Organa et al 2017 0.244 0.225 0.801 0.801 0.801 Sudar Network Organa et al 2017 0.246 0.225 0.800 0.801 0.801 Sudar Network Organa et al 2017 0.256 0.114 0.026 -188 0.801 Considered small When value Quencial Calcing and the al 2017 0.026 0.826 0.831 -1.884 0.806 Turisia Lateir et al 2017 0.056 0.826 0.827 0.827 0.827 0.827 0.827 0.827 0.827	S	sudi Arabia Saudi Arabia	Al-Numair 2006 Alzophaibi et al 2014	-0.295 -0.376	0.150	0.022	-0.589	-0.002	-1.971	0.049	
Second Attals 0.148 0.014 0.001 0.024 0.002 0.000 Brain Agoumi et al 2013 0.022 0.141 0.010 0.731 0.000 0.000 Brain Agoumi et al 2013 0.029 0.001 0.731 0.000 0.000 Brain 0.029 0.744 0.222 0.000 0.711 0.000 0.001 Statem Fedal et al 1012 0.744 0.222 0.000 1.114 0.000 0.001 Statem Trailand Organa et al 2017 0.228 0.000 0.001 0.001 Trailand Organa et al 2017 0.228 0.000 0.001 0.001 0.001 Considered small Memory All 2020 0.891 0.001 0.001 0.001 0.001 Tunial Tunial Calcular Calcula	s	audi Arabia	Bahammam et al 2016	-0.123	0.111	0.012	-0.341	0.095	-1.104	0.269	
Brain Ageumi et al 2013 0.666 0.143 0.027 3.900 0.000 Stain	s	saudi Arabia Spain	López-Bueno et al 2015	-0.148	0.074	0.005	-0.294	-0.260	-3.900	0.047	
Sudan Twilling Fedal et al 1992 0.744 0.229 0.000 1194 0.003 0.001 Twilling Organ et al 2017 0.289 0.000 1194 0.000 1098 0.001 Twilling Organ et al 2017 0.289 0.010 0.001 1098 0.001 Fig. 7 Hedges' Organ et al 2017 0.289 0.010 1018 0.001 1018 0.001 considered small when value 0.02 metal et al 2017 0.000 0.001 0.001 1.588 0.001 Twilling Twilling 0.001 0.000 0.001	8	ipain Spain	Agoumi et al 2013	-0.659	0.143	0.021	-0.839	-0.278	-3.900	0.000	
Fig. 7 Hedges' Organize tal 2017 Thailand 0.444 Organize tal 2017 Dialand 0.444 Organize tal 2016 Dialand 0.444 Organize tal 2014 Dialand 0.444 Organize t	S	ludan	Fedail et al 1982	-0.744	0.225	0.050	-1.184	-0.303	-3.310	0.001	
Trailand Pressperand Spreadout 2013 0.683 0.001	T	hailand	Ongsara et al 2017	-0.235	0.226	0.050	-0.478	0.009	-1.888	0.001	
13 User Fride 12014 0.051 0.052 0.055 0.052 0.050 13 User Fride 12014 0.054 0.054 0.055 0.055 0.055 0.055 14 0.055 0.055 0.055 0.055 0.055 0.055 0.055 0.055 1 0.055 0.057		hailand	Prasetya and Sapwarobol 2018	-0.693	0.209	0.044	-1.103	-0.282	-3.309	0.001	dide included in moto dealveis Hodgos' avalue is
Considered small when varue 2002, medium = 015, large 016, 1-184, 0.088 Tonisia To	rig. / neuges (g values i		IT DOO		Ign 1	JI 434	0.00	unine	-Siuu	
Tunisia Latin et al 2017 0.006 0.181 0.033 0.389 0.360 0.026 0.980 	considered sma			aiää	= 0.5	, larg	€0.627	0.82	-1.914	0.058	
Turkey Absurger vial 2005 0.380 0.200 0.402 0.180 0.012 1.5802 0.007 Turkey Canal et al 2014 0.170 0.158 0.024 -1.5802 0.047 Turkey Canal et al 2014 0.570 0.128 -1.5802 0.047 Turkey Call et al 2014 0.597 0.168 0.262 -1.337 0.011 Turkey Call et al 2014 0.597 0.168 0.262 -0.337 0.011	T	'unisia 'unisia	Latini et al 2017	-0.006	0.181	0.033	-0.359	0.360	-0.026	0.980	
13 Unkey Callance int 2011 0.110 0.110 0.110 0.110 0.110 0.218 14 Constrainty Callance int 2013 0.650 0.025 0.625 0.601 0.001 Turkey Developilue at 2013 0.655 0.160 0.025 0.685 0.001 0.001 Turkey Developilue at 2013 0.655 0.160 0.022 0.682 0.601 0.001 Turkey Kaylongule at 1090 0.473 0.102 0.023 0.681 0.001 0.001 Turkey Unalscale it al 2011 0.502 0.622 0.682 0.692 0.693 0.001 0.001 Turkey Void it al 2004 0.223 0.601 0.002 0.993 0.993 0.993 0.993 UAE Farik et al 2019 0.245 0.101 0.400 0.903 0.993 0.993 UAE Ibrahine tal 2006 0.217 0.017 0.977 0.907 0.993 0.993 0.993 0.993 UAE Ibrahine tal 2006 0.2170 0.027 0.011	T	urkey	Aksungar et al 2005	-0.390	0.205	0.042	-0.793	0.012	-1.902	0.057	
Turkey Developing et al 2013 0.666 0.180 0.024 3.307 0.001 Turkey Kaylocolu et al 1096 -0.73 0.162 0.033 -0.81 -0.81 Turkey Unalazak et al 2011 -0.504 0.229 0.652 -0.116 -2.568 0.003 Turkey Unalazak et al 2011 -0.504 0.229 0.652 0.116 -0.563	T	untey Turkey	Celik et al 2014 Celik et al 2014	-0.537	0.158	0.026	-0.137 -0.855	-0.219	-3.306	0.278	
Turkey Unalacak et al 2011 0.504 0.223 0.052 0.855 2.199 0.028 Turkey Yucek et al 2004 0.023 0.106 0.023 0.106 0.134 0.893 Turkey Yucek et al 2004 0.623 0.106 0.023 0.106 0.134 0.893 UAE Farik et al 2019 0.454 0.137 0.014 0.509 2.777 0.027 P UAE Farik et al 2019 0.454 0.137 0.017 0.011 4.900 0.055 P UAE Jamme et al 2019 0.454 0.107 0.011 4.900 0.005 P UAE Sheabab et al 2012 0.373 0.127 0.137 0.139 0.802 P UAE Sheabab et al 2012 0.373 0.127 0.127 0.139 0.873 0.803 P UAE Other al 2019 0.454 0.006 0.000 P P UAE Sheabab et al 2012 0.372 0.2	T	urkey urkey	Develioglu et al 2013 Kaykcoglu et al 1998	-0.595	0.180	0.032	-0.948 -0.831	-0.242	-3.307 -2.598	0.001	
1 3 Turkey Vocel et al 2004 - 0.623 0.166 0.028 0.211 0.306 -0.124 0.893 1 3 Turkey - 0.225 0.120 0.014 -0.560 -0.207 0.007 UAE Faria et al 2019 - 0.454 0.137 0.019 -0.723 -0.164 -0.303 0.001 UAE Ibrahim et al 2019 - 0.454 0.137 0.019 -0.723 -0.164 -0.303 0.001 UAE Jamme et al 2019 - 0.454 0.177 0.031 -0.068 -0.201 -0.106 0.002 UAE Sharbab et al 2012 - 0.378 0.127 0.018 0.802	1	urkey	Unalacak et al 2011	-0.504	0.229	0.052	-0.952	-0.055	-2.199	0.028	
UAE Faria esi 2019 -0.454 0.137 0.019 -0.723 -0.184 -3.03 0.001	12	urkey urkey	rucel et al 2004	-0.023	0.168	0.028	-0.351	-0.090	-0.134	0.893 0.807	
UAE Jamar et al 2019 0.545 0.175 0.031 0.886 0.201 → UAE Stepsbe stat 2012 0.577 0.197 0.018 0.002 → UAE Stepsbe stat 2012 0.577 0.197 0.028 2978 0.002 → UAE 0.449 0177 0.026 0.000 →	IJ 🖞	IAE IAE	Faris et al 2019 Ibrahim et al 2008	-0.454 -0.518	0.137	0.019	-0.723	-0.184	-3.303	0.001	
UAE Stepade et al 2012 40.41% 0.127 40.11% 40.27% 0.003 7294 6.696 0.000 +	Ŭ	AE	Jamar et al 2019	-0.545	0.175	0.031	-0.885	-0.201	-3.108	0.002	
	U U	IAE	orieneo et al 2012	-0.378	0 127	0.016	-0.603	-0.294	-5.696	0.003	

Table 3 Characteristics of studies included in body weight change during Ramadan reviewed and analyzed as per the country included with three or more studies

Component	Country	ĸa	N ^b	/ ^{2c} (%)	Hedges' <i>g</i> (95%CI) ^d
Body weight change	Iran	22	1542	53.1	- 0.305 (- 0.356 to - 0.254)
	Jordan	7	480	0.001	- 0.291 (- 0.434 to - 0.268)
	Turkey	7	227	67.6	- 0.301 (- 0.381 to - 0.200)
	India	5	176	50.6	- 0.291 (- 0.612 to - 0.304)
	Malaysia	4	134	0.001	- 0.291 (- 0.696 to - 0.341)
	Pakistan	4	239	0.001	- 0.291 (- 0.381 to - 0.002)
	Saudi Arabia	4	177	0.001	- 0.148 (- 0.296 to - 0.200)
	Tunisia	4	92	69.9	- 0.297 (- 0.505 to - 0.089)
	UAE	4	172	0.001	- 0.449 (- 0.603 to - 0.294)

^a K: denotes the number of studies

^b N: denotes the number of participants

 c statistic describes the percentage of variation across studies due to heterogeneity rather than chance [162]

^d CI, conidence interval

signiicant moderator in body weight loss induced by Rama-499 dan. In our analysis, the small efect size in body weight 500 (Hedges' g value of - 0.360, 95% CI - 0.405 to - 0.315) 501 equates to - 1.022 kg, which is less than the mean of weight 502 loss reported by the meta-analyses of Sadeghirad and col-503 leagues [32] and Fernando et al. [33], respectively. 504 The weight loss induced by Ramadan fasting observed 505 in the current analysis is the sum of reductions in both fat 506 masses (expressed in terms of body fat percent and absolute 507 fat mass), as well as fat-free mass as reported by Fernando 508

and colleagues [33]. This reduction in body weight and 509 body fat compartment induced by intermittent fasting dur-510 ing Ramadan is consistent with the body weight and body 511 fat reductions caused by other models of intermittent fasting 512 regimens [2, 93, 94]. 513

The relatively more significant reduction in body weight 514 reported during summer and autumn in comparison to win-515 ter is explained by the nature of Ramadan diurnal fasting. 516 which depends on the day hour fasting rather than night hour 517 fasting reported in other religions and intermittent fasting 518 regimens [95, 96]. Because the day hours' fasting during 519 520 Ramadan increases in summer (reaching 17 h), in comparison to winter (reaching 12 h), it becomes reasonable to lose 521 more weight at the end of Ramadan in the summer season, 522 vs. winter. Further, the higher temperature and humidity 523 during summer favors the reduction of body weight as a 524 result of the excessive sweating and more dehydrated state 525 [97]. However, considering the body weight loss is transient 526 527 during Ramadan [32, 33], it becomes pivotal to emphasize the importance of maintenance of weight loss after Rama-528 dan, and addressing the factors triggering weight gain after 529 530 Ramadan in research works.

531 In fact, according to the Islamic rules and instructions of the Prophetic Sunnah directed by the Prophet Mohammad 532 (PBUH), adult Muslims are encouraged to voluntarily fast 533 two days a week (namely Monday and Thursday), any six 534

days in the lunar or "Islamic" month of Shawwal (the month 535 after Ramadan, Hijri), the three full-moon days (13th, 14th, 536 and 15th days of each lunar month, Hijri), the Day of Ara-fah 537 (9th of Dhu'l - Hijja in the Islamic Hijri calendar), to fast as 538 often as possible in the two lunar months before Rama-dan 539 (Rajab and Sha'aban), and to fast the irst nine days of Dhu'l-540 Hijia in the lunar Islamic calendar for those who are not 541 performing Hajj (the pilgrimage to Makkah) [98, 99]. 542 Practicing such voluntary fasting after Ramadan has been 543 reported to maintain weight loss and to improve metabolic 544 markers and food intakes among overweight and obese 545 adult Muslims [98, 100, 101], an efect that may extend for six 546 months after Ramadan [100]. 547

The heterogeneity of the studies included in the cur-rent 548 meta-analysis for the body weight could be ascribed to variable 549 efects and confounding factors, and due to several 550 inconsistencies in designing, conducting, and interpreting 551 results of the studies undertaken during Ramadan. It is con-552 ceivable that a critical violation that many fasting people do 553 during Ramadan is skipping a pre-dawn meal (suhoor), a matter 554 that could contribute to a signiicant daily caloric deicit, and would 555 be expected to promote metabolic abnor-malities, increased postprandial insulin levels, increased fat oxidation, and 557 conceivably confound the incumbent results [103]. Further, variable changes in lifestyle behaviors such as physical activity 559 and sleep patterns [102, 103] accom-panying the fasting month 560 of Ramadan may impact body weight changes. Thus, future 561 research has to consider all the covariables mentioned above 562 and to control the interfering factors that may hinder Ramadan 563 research results in less accurate, especially total caloric and 565 dietary intakes, physi-cal activity and sleep patterns.

Strengths of the current review stems from that it is the 567 one with the largest number of harvested and analyzed arti-568 cles ever published in the literature on Ramadan and body 569 570 weight changes. Second, the strict inclusion and exclusion

Name Name <th< th=""><th>Group by</th><th>Study name</th><th></th><th>_</th><th>Statistics fo</th><th>or each s</th><th>tudy</th><th></th><th></th><th>Hedges's g and 95% CI</th></th<>	Group by	Study name		_	Statistics fo	or each s	tudy			Hedges's g and 95% CI
Adam Result al 200 404 922 004 407 0.92 1.11 0.95 1	Season		Hedges's g	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	
Atoma Absolution Advance Figure 14 (200) -1440 0550 -1440 0550 -1440 Atoma Figure 14 (200) -010 010	Autumn	Ramadan 2002	-0.483	0.252	0.064	-0.977	0.012	-1.914	0.056	
Addres Product at a John 0.27 0.12 0.21 0.24 0.20 0.26 0.25	Autumn	Afrasiabi et al 2003	-0.483	0.252	0.064	-0.977	0.012	-1.914	0.056	
Name Number af John Olds	Autumn	Kassab et al 2003 Fakhrzadeh et al 2003	-0.286	0.151	0.023	-0.582	-0.010	-1.892	0.058	
Adam Remark et al 2014 0.81 0.921 0.931	Autumn	Yucel et al 2004	-0.023	0.168	0.028	-0.351	0.306	-0.134	0.893	
Adam Katas is d Jobit 0.10 0.12 0.10 0.	Autumn	Rahman et al 2004	-0.834	0.252	0.063	-1.327	-0.340	-3.309	0.001	
Partmeter Persubart at 2000 100 220 120 230 127 Loop	Autumn	Kassab et al 2004 Aksungar et al 2005	-0.077	0.145	0.021	-0.361	0.208	-0.527	0.598	
Allen Allen <t< td=""><td>Autumn</td><td>Farshidfar et al 2006</td><td>-1.016</td><td>0.263</td><td>0.042</td><td>-1.529</td><td>-0.502</td><td>-3.877</td><td>0.000</td><td></td></t<>	Autumn	Farshidfar et al 2006	-1.016	0.263	0.042	-1.529	-0.502	-3.877	0.000	
Attam Zost H al 2005 0.71	Autumn	Al-Numair 2006	-0.295	0.150	0.022	-0.589	-0.002	-1.971	0.049	
Dathmen Diskhan et al bolog 0.00 0.14 0.02 <th0.02< th=""> 0.0</th0.02<>	Autumn	Ziaee et al 2006	-0.376	0.114	0.013	-0.599	-0.153	-3.300	0.001	
Autom Bishis and heights 2007 0.70 0.20 0.80 0.80 1 Autom Marcina 2007 0.20 <t< td=""><td>Autumn</td><td>Subhan et al 2006</td><td>-0.307</td><td>0.174</td><td>0.030</td><td>-0.598</td><td>-0.235</td><td>-2.065</td><td>0.039</td><td></td></t<>	Autumn	Subhan et al 2006	-0.307	0.174	0.030	-0.598	-0.235	-2.065	0.039	
Adam At-Instant advant 207 Adda Adam	Autumn	Salehi and Neghab 2007	-0.678	0.205	0.042	-1.079	-0.276	-3.309	0.001	
Halm 2007 Color Color <thcolor< th=""> Color Color</thcolor<>	Autumn	Al- Hourani and Atoum 2007	-0.262	0.133	0.018	-0.522	-0.001	-1.969	0.049	
Augum Modal of 2027 0.01 0.09	Autumn	Mansi 2007 Mansi and Amneh 2007	-0.247	0.120	0.014	-0.483	-0.012	-2.061	0.039	
Alamm Istalm # aloos 0.410 0.120 0.120 0.120 0.120 0.120 0.120 0.120 Alamm Land Standy of al 2000 0.430 0.030 0.410 0.120	Autumn	Moosavi et al 2007	-0.310	0.094	0.009	-0.494	-0.126	-3.297	0.001	-
Adamm Dihutebrandi el 2020 -0.40 0.00 0.727 -0.18 -0.20 0.001 -1 Sering Axia and Rescue 1197 -0.69 0.339 0.115 -1.32 0.001 -1.46 0.021 -1.47 0.001 0.221 0.001 <td< td=""><td>Autumn</td><td>Ibrahim et al 2008</td><td>-0.518</td><td>0.270</td><td>0.073</td><td>-1.047</td><td>0.011</td><td>-1.920</td><td>0.055</td><td></td></td<>	Autumn	Ibrahim et al 2008	-0.518	0.270	0.073	-1.047	0.011	-1.920	0.055	
Allamba Lamba Lamba <thlamba< th=""> Lamba Lamba <t< td=""><td>Autumn</td><td>Shariatpanahi et al 2007</td><td>-0.463</td><td>0.140</td><td>0.020</td><td>-0.737</td><td>-0.188</td><td>-3.303</td><td>0.001</td><td></td></t<></thlamba<>	Autumn	Shariatpanahi et al 2007	-0.463	0.140	0.020	-0.737	-0.188	-3.303	0.001	
Spring Gyng Actia or Bascel 1007 0.69 0.336 0.115 -1.22 0.005 -1.24 0.005 -1.24 0.005 -1.24 0.005 -1.24 0.005 -1.24 0.005 -1.24 0.005 -1.24 0.005 0.001 -1.24 0.005 0.001 -1.24 0.001 -1.24 0.001 -1.24 0.001 -1.24 0.001 -1.24 0.001 -1.24 0.001 0.	Autumn	Lamri-Sennadji et al 2009	-0.243	0.147	0.022	-0.532	0.045	-1.654	0.098	
Spring Bring	Spring	Azizi and Rasouli 1987	-0.659	0.339	0.115	-1.323	0.005	-1.945	0.052	
Bring	Spring	Takruri 1989	-0.286	0.087	0.008	-0.456	-0.116	-3.296	0.001	
Determine Product and 1962, Determine 0.44 0.420 0.430 0.440 <	Spring	Fadeil at al 1000	-0.329	0.119	0.014	-0.562	-0.095	-2.759	0.006	
Bummer Pathas and Path 2010 0.491 0.197 0.295 -3.390 0.091 Summer Assad st 2011 0.619 0.224 4.264 0.611 0.619 Summer Assad st 2011 0.629 0.52 0.224 4.264 0.611 0.614 Summer Assad st 2011 0.629 0.625 0.656 0.601 1.171 0.644 0.611 Summer Fairs st 2012 0.310 0.227 0.228 0.026 0.031 1 1 1 1 1 1 1 1 1 1 1 1 1 0.227 0.239 0.031 1 1 1 1 1 0.227 0.239 0.031 1 1 1 0.247 0.031 1 1 1 0.247 0.031 1 1 1 1 0.247 0.031 1 1 1 0.027 0.021 0.011 1 1 1 0.027 0.021 </td <td>Summer</td> <td>Norouzy et al 2010</td> <td>-0.744</td> <td>0.225</td> <td>0.050</td> <td>-1.184</td> <td>-0.303</td> <td>-3.310</td> <td>0.001</td> <td></td>	Summer	Norouzy et al 2010	-0.744	0.225	0.050	-1.184	-0.303	-3.310	0.001	
Summer Abesimmer	Summer	Pathan and Patil 2010	-0.651	0.197	0.039	-1.036	-0.265	-3.309	0.001	
Bummer Assa. et al 2011 - 0.029 0.13 0.017 -0.28 0.22 -0.26 0.28 0.29 -0.27 0.00 -0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	Summer	Abedelmalek et al 2011	-1.518	0.468	0.219	-2.434	-0.601	-3.246	0.001	
commen comment comment <thcomment< th=""> <thcomment< th=""> <thco< td=""><td>Summer</td><td>Assadi et al 2011</td><td>-0.029</td><td>0.130</td><td>0.017</td><td>-0.283</td><td>0.225</td><td>-0.226</td><td>0.821</td><td></td></thco<></thcomment<></thcomment<>	Summer	Assadi et al 2011	-0.029	0.130	0.017	-0.283	0.225	-0.226	0.821	
Dammer Fairs et 29:12b -0.427 0.148 0.022 0.077 -118 0.071 -11 Summer Sheba et al 2012 -0.378 0.222 0.051 -2.978 0.000 -1 -1 Summer Developile et al 2013 -0.595 0.143 0.227 -0.397 -0.900 0.001 -1 -1 Summer Developile et al 2013 -0.595 0.101 0.022 -0.801 -2.878 0.001 -1	Summer	Faris et al 2012	-0.504	0.229	0.052	-0.952	-0.055	-2.199	0.028	
Summer Khada id 2012 0.051 0.127 0.161 0.17 0.161 Summer Apount el 2013 0.559 0.127 0.161 0.227 0.280 0.287 0.290 0.001 1 Summer Apount el 2013 0.559 0.143 0.222 0.278 0.001 1 1 Summer Hossavid el 2013 0.216 0.016 0.022 0.017 0.018 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.011 1 1 1 1 1 1 1 1 1 1 0.011 1 1 0.011 1 1 1 0.011 1 1 0.011 1 1 0.011 1 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 1 1 0.011 <	Summer	Faris et al 2012b	-0.487	0.148	0.022	-0.777	-0.198	-3.304	0.001	
Summer Shehab et al 2012 - 0.778 0.127 0.014 0.027 - 0.129 - 2.978 0.033	Summer	Khattak et al 2012	-0.834	0.252	0.063	-1.327	-0.340	-3.309	0.001	
Bummer Pageum Bal 2013 Summer Hosseni al 2013 Summer Bohn al 2014 Summer Abophab i al 2014 Summer Abophab i al 2014 Summer Abophab i al 2014 Summer Celli et al 2014 Summer Hosseni al 2015 Summer Bohn al 2015 Summer Bohn al 2014 Summer Abophab i al 2014 Summer Celli et al 2014 Summer Bohn al 2015 Summer Bohn al 2016 Summer Celli et al 2014 Summer Bohn al 2016 Summer Bohn al 2017 Summer Bohn al 2016 Summer Bohn al 2016 Summer Bohn al 2017 Summer Bohn al 2016 Summer Siparate Al 2017 Summer Bohn al 2016 Summer Bohn al 2016 Summer Bohn al 2016 Summer Siparate Al 2017 Summer Bohn al 2016 Summer Bohn al 2017 Summer Bohn	Summer	Shehab et al 2012	-0.378	0.127	0.016	-0.627	-0.129	-2.978	0.003	_
Summer Hassar et al 2013 -0.202 0.011 -1.644 0.058 Summer Norsar et al 2013 -0.217 0.398 0.011 -1.644 0.058 Summer Norsar et al 2013 -0.217 0.398 0.014 -0.244 0.081 -1.7 Summer Norsar et al 2013 -0.217 0.244 0.037 -2.244 0.001 -1.7 Summer Narsar et al 2014 0.518 0.271 0.747 1.583 0.529 -1.145 0.222 -1.145 0.227 0.001 -1.145 0.227 0.011 -1.145 0.227 0.011 -1.145 0.228 0.011 -1.145 0.227 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.145 0.228 0.011 -1.147 0.228 0.011 -1.147 <	Summer	Agoumi et al 2013 Develio du et al 2013	-0.559	0.143	0.021	-0.839	-0.278	-3.900	0.000	
Summer Hosseni el al 2013 -1.27 0.399 0.152 2.240 -0.514 0.279 0.001 Summer Rohn et al 2013 -0.510 0.154 0.024 -0.519 0.154 0.026 0.001 Summer Rohn et al 2013 -0.510 0.214 0.028 0.001 -1.45 0.225 0.000 Summer Alzophalo et al 2014 -0.370 0.122 0.016 0.217 0.016 0.217 0.016 0.017 -1.45 0.226 0.005 0.001 -1.45 0.226 0.001 0.011 0.011 0.011 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.011 0.012 0.012 0.011 0.012 0.012 0.011 0.012 0.012 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 <td< td=""><td>Summer</td><td>Haouari-Oukerro et al 2013</td><td>-0.308</td><td>0.163</td><td>0.027</td><td>-0.627</td><td>0.011</td><td>-1.894</td><td>0.058</td><td></td></td<>	Summer	Haouari-Oukerro et al 2013	-0.308	0.163	0.027	-0.627	0.011	-1.894	0.058	
Summer Norozy et al 2013 - 0.214 0.065 0.044 0.027 0.067 0.228 0.001	Summer	Hosseini et al 2013	-1.277	0.389	0.152	-2.040	-0.514	-3.279	0.001	
Bummer Kom at 2013 - 10.510 0.124 0.024 4.513 - 2.019 0.001	Summer	Norouzy et al 2013	-0.214	0.065	0.004	-0.342	-0.087	-3.294	0.001	
Summer Abgustative if al 2014 -0.376 0.328 0.108 -0.108 0.227 -1.445 0.222 Summer Cansel et al 2014 -0.537 0.162 0.024 0.170 0.166 0.024 0.170 0.016 0.048 0.170 0.016 0.048 0.170 0.016 0.048 0.170 0.016 0.048 0.176 0.010 0.011 0.011 0.016 0.011 0.012 0.016 0.014 0.016 0.014 0.016 0.014 0.016 0.014 0.016	Summer	Rohin et al 2013 Savedda et al 2013	-0.510	0.154	0.024	-0.813	-0.208	-3.305	0.001	
Summer Carsel et al 2014 0.170 0.169 0.024 0.157 0.162 0.024 0.051 0.024 Summer Fetoslihazach et al 2014 0.051 0.015 0.016 0.011 0.015 0.016 0.012 0.015 0.016 0.012 0.015 0.016 0.012 0.015 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.012 0.016 0.000	Summer	Alzoghaibi et al 2014	-0.376	0.328	0.108	-1.018	0.267	-1.145	0.252	
Summer Cellic et al 2014 -0.637 0.162 0.028 -0.635 -0.219 -0.306 0.001 Summer Hassan and Isavum 2014 -0.166 0.122 0.011 -0.428 0.151 Summer Hassan and Isavum 2014 -0.160 0.022 0.084 0.746 0.116 -0.128 0.154 Summer Salahuddin and Javed 2014 -0.221 0.084 0.767 0.112 -1.268 0.208 Summer Ganou et al 2015 -0.414 0.013 -0.017 -0.112 -2.007 0.009 Summer Ganou et al 2015 -0.421 0.021 -0.017 -0.112 -2.007 0.009 Summer Summer al 2015 -0.526 0.021 -0.017 -0.124 -0.2145 -0.201 -0.214 -0.218 0.001 -1.111 -0.217 -0.019 -0.218 0.000 -0.019 -0.218 0.000 -0.019 -0.218 0.000 -0.010 -0.019 -0.010 -0.019 -0.010 -0.010	Summer	Cansel et al 2014	0.170	0.156	0.024	-0.137	0.476	1.085	0.278	
Summer Personalization et al. 2014 0.440 0.123 0.013 0.024 0.019 0.330 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Summer	Celik et al 2014	-0.537	0.162	0.026	-0.855	-0.219	-3.306	0.001	
Summer Balandman diaved 2014 - 0.314 0.220 0.040 - 0.746 0.119 - 1.426 0.154 0.54 0.554 0.258 0	Summer	Hassan and Isawumi 2014	-0.406	0.123	0.015	-0.048	0.091	-3.301	0.001	
Summer Babundain and Javed 2014 028 0.160 0.022 0.581 0.125 -1266 0.208 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000	Summer	McNeil et al 2014	-0.314	0.220	0.049	-0.746	0.118	-1.425	0.154	
Summer Begum et al 2015 -0.414 0.018 -0.703 -0.176 -0.122 2.2007 0.001 Summer Hosseini and Heijad 2015 -0.421 0.203 0.014 -0.818 -0.023 -2.007 0.009 Summer Lidex-Elucene et al 2015 -0.522 0.124 0.018 -0.725 -2.200 0.001	Summer	Salahuddin and Javed 2014	-0.228	0.180	0.032	-0.581	0.125	-1.265	0.206	
Burmmer Hossenia na Hejazi 2015 - 0.421 0.230 0.045 -1.076 -0.122 -2.076 0.039 Summer Lógez Bueno et al 2015 - 0.421 0.230 0.041 -0.818 -0.022 -2.076 0.039 Summer Suman et al 2015 - 0.421 0.018 0.012 -0.570 -0.145 -3.289 0.000 Summer Suman et al 2015 - 0.388 0.147 0.022 -0.670 -0.099 -2.628 0.009 Summer Bahammam et al 2016 -0.122 0.111 0.012 -0.341 0.025 -0.001	Summer	Begum et al 2015	-0.441	0.134	0.018	-0.703	-0.179	-3.302	0.001	_
Summer López-Bueno et al 2015 0.622 0.134 0.016 0.725 0.230 -3.290 0.000 Summer Suriani et al 2015 -0.358 0.101 0.122 -0.570 -0.485 -2.259 0.010 0.111 Summer Tailo et al 2015 -0.400 0.152 0.022 -0.670 -0.493 -2.589 0.010 0.111 Summer Bahamman et al 2016 -0.123 0.012 -0.893 -2.589 0.001 0.111 Summer Ganjal et al 2016 -0.517 0.160 0.024 -0.823 -0.210 -3.305 0.001 Summer Nugraha et al 2017 -1.010 0.344 0.121 -3.310 0.000 0.011 Summer Habid al 2017 -0.029 0.115 0.013 -0.810 0.051 -1.657 0.939 0.930 0.930 0.935 0.930 0.901 -1.44 0.942 0.930 0.935 0.935 0.935 0.935 0.935 0.935 0.935 <td< td=""><td>Summer</td><td>Hosseini and Heiazi 2015</td><td>-0.014</td><td>0.230</td><td>0.055</td><td>-0.818</td><td>-0.023</td><td>-2.007</td><td>0.009</td><td></td></td<>	Summer	Hosseini and Heiazi 2015	-0.014	0.230	0.055	-0.818	-0.023	-2.007	0.009	
Summer Sigwandi et al 2015 -0.38 0.108 0.014 -0.32 0.001 Summer Table et al 2015 -0.381 0.147 0.022 -0.670 -0.014 5.289 0.010 Summer Table et al 2015 -0.400 0.152 -0.670 -0.035 0.009 -1.14 0.229 -0.870 -0.144 -0.229 0.001 -1.14 0.229 0.201 -3.305 0.001 -1.14 -1.14 0.229 0.201 -3.305 0.001 -1.14 0.229 0.201 -3.305 0.001 -1.14 0.229 0.201 -3.305 0.001 -1.14 0.229 0.201 -3.305 0.001 -1.14 0.229 0.015 0.011 0.015 0.011 0.035 0.000	Summer	López-Bueno et al 2015	-0.522	0.134	0.018	-0.785	-0.260	-3.900	0.000	_
Summer Suran et al 2015 0.481 0.147 0.022 0.670 0.093 2.289 0.010 Summer Tailo et al 2015 0.400 0.152 0.022 0.689 0.010 Summer Bahammam et al 2016 0.512 0.012 0.280 0.010 0.22808 0.001 Summer Symmet Id 2016 0.551 0.168 0.024 0.823 0.210 3.305 0.001 Summer Nugrahe et al 2017 0.025 0.297 0.088 1.208 0.042 0.23 0.000 Summer AbduKareen et al 2017 0.025 0.297 0.088 1.208 0.042 0.23 0.000 Summer AbduKareen et al 2017 0.025 0.297 0.088 1.208 0.042 0.23 0.000 Summer Khan et al 2017 0.025 0.297 0.088 1.028 0.042 0.23 0.000 Summer Khan et al 2017 0.002 0.115 0.013 0.316 0.133 0.080 0.423 Summer Khan et al 2017 0.025 0.113 0.013 0.316 0.133 0.080 0.423 Summer Khan et al 2017 0.025 0.113 0.013 0.518 0.055 0.997 Summer Khan et al 2017 0.217 0.113 0.018 0.051 1.857 0.997 Summer Khan et al 2017 0.229 0.169 0.028 0.810 0.051 1.857 0.997 Summer Latir et al 2017 0.229 0.169 0.028 0.810 0.051 0.185 0.090 Summer Khan et al 2017 0.229 0.160 0.014 0.557 0.280 0.011 - Summer Latir et al 2017 0.255 0.124 0.015 0.478 0.002 0.091 Summer Mohammadzade et al 2017 0.255 0.124 0.015 0.478 0.003 1.075 0.283 Summer Mohammadzade et al 2017 0.245 0.1292 0.028 0.001	Summer	Sijavandi et al 2015	-0.358	0.108	0.012	-0.570	-0.145	-3.299	0.001	
Dummer Bahammar et al 2015 -0.100 0.122 0.024 0.025 0.102 0.020 0.029 -1.040 0.289 Summer Ganjali et al 2016 -0.517 0.156 0.022 -0.210 -3.305 0.001 Summer Sym et al 2017 -1.078 0.246 0.081 -0.218 -3.305 0.001 Summer Nugraha et al 2017 -0.107 0.226 0.044 -0.216 -3.305 0.000 Summer Abulkarement et al 2017 -0.078 0.208 -0.424 -2.103 0.035 Summer Bakki et al 2017 -0.027 0.168 0.023 -0.610 0.051 -1.657 0.097 Summer Khan et al 2017 -0.267 0.113 0.013 -0.350 -0.025 -3.09 0.001 -0.025 Summer Mohammatcade et al 2017 -0.563 0.286 -3.289 0.001 -0.025 -3.090 0.001 -0.025 -3.090 0.001 -0.026 -0.023 -0.024 <t< td=""><td>Summer</td><td>Suriani et al 2015</td><td>-0.381</td><td>0.147</td><td>0.022</td><td>-0.670</td><td>-0.093</td><td>-2.589</td><td>0.010</td><td></td></t<>	Summer	Suriani et al 2015	-0.381	0.147	0.022	-0.670	-0.093	-2.589	0.010	
Summer Ganjali et al 2016 -0.517 0.168 0.024 -0.823 -0.216 -3.305 0.001 Summer Syam et al 2017 -1.078 0.246 0.024 -0.215 -3.305 0.001 Summer AbdulKarem et al 2017 -0.022 0.297 0.088 -2.103 0.005 Summer AbdulKarem et al 2017 -0.022 0.227 0.286 -2.682 0.008 -4.373 Summer Hakutheen et al 2017 -0.029 0.115 0.133 -0.256 -2.682 0.009 Summer Khan et al 2017 -0.027 0.113 0.015 -1.657 0.026 0.980 -4.333 Summer Malkemakan et al 2017 -0.050 0.181 0.033 -0.255 0.390 0.001 -4.333 0.001 Summer Malkemakan et al 2017 -0.651 0.197 0.038 -0.426 -3.309 0.001 -4.333 0.001 -4.333 0.051 -4.333 0.051 -4.333 0.051 -4.333	Summer	Bahammam et al 2016	-0.400	0.152	0.023	-0.341	0.095	-2.020	0.269	
Summer Syam et al 2016 -0.530 0.160 0.028 -0.844 -0.216 -0.305 0.001 Summer Nugrahe et al 2017 -0.625 0.297 0.088 -1.208 -0.042 -2.103 0.0035 Summer Abubheen et al 2017 -0.062 0.297 0.088 -0.256 -2.832 0.0035 Summer Backi et al 2017 -0.029 0.116 0.133 -0.216 0.0423 Summer Khan et al 2017 -0.279 0.118 0.033 -0.516 0.097 Summer Khan et al 2017 -0.025 0.111 0.033 -0.519 -0.500 0.001 Summer Latri et al 2017 -0.661 0.197 -0.135 -3.309 0.001 -1 Summer Mohammadzade et al 2017 -0.651 0.197 0.038 -0.106 0.125 -3.309 0.001 -1 Summer Mohammadzade et al 2017 -0.255 0.124 0.104 0.035 -3.039 0.001 Sum	Summer	Ganjali et al 2016	-0.517	0.156	0.024	-0.823	-0.210	-3.305	0.001	
Summer Nugraha et al 2017 -1.078 0.246 0.001 -1.511 -1.038 -0.042 -2.138 0.008 -1.038 -0.042 -2.138 0.008 -1.038 0.028 -1.038 0.042 -2.138 0.008 -1.038 0.028 -0.080 1.042 -2.208 0.0097 -1.138 0.033 -0.558 -0.075 -2.120 0.0097 -1.138 0.038 -1.036 -2.255 -3.399 0.001 -1.138 1.927 0.054 -1.138 1.927 0.054 -1.138 1.927 0.054 -1.138 1.927 0.054 -1.138 1.927 0.054 -1.138 1.927 0.054	Summer	Syam et al 2016	-0.530	0.160	0.026	-0.844	-0.216	-3.305	0.001	
Jummer Asubheen et al 2017 -0.010 0.341 0.167 -0.753 -0.256 2.632 0.008 Summer Bakki et al 2017 -0.092 0.115 0.013 -0.316 -0.832 0.008 Summer Khan et al 2017 -0.297 0.113 0.013 -0.316 -0.075 -2.620 0.009 Summer Latir et al 2017 -0.005 0.118 0.003 -0.350 -0.025 0.390 Summer Maleknakan et al 2017 -0.651 0.197 0.039 -1.035 -3.299 0.001	Summer Summer	Nugraha et al 2017 AbdulKareem et al 2017	-1.078	0.246	0.061	-1.561	-0.595	-4.373	0.000	
Summer Bakki et al 2017 -0.092 0.115 0.013 -0.316 0.133 0.800 0.423 Summer Khan et al 2017 -0.279 0.119 0.028 -0.015 -1.857 0.009 Summer Latir et al 2017 -0.005 0.111 0.003 -0.350 -0.025 0.980 Summer Malekmakan et al 2017 -0.661 0.197 0.039 -1.036 -0.256 -3.309 0.001 Summer Mohammadzade et al 2017 -0.651 0.197 0.039 -1.036 -0.256 -3.309 0.001 Summer Norsuzy et al 2017 -0.226 0.124 0.015 -1.888 0.059 Summer Norsuzy et al 2017 -0.226 0.028 -0.011 -1.885 0.059 Summer Roy and Bandyopadhyay 2017 -0.167 0.028 -0.028 -0.013 -1.986 0.001 Summer Nachwa et al 2018 -0.027 0.014 -0.223 -0.84 -0.013 0.990 -0.11 -1.885 0.598 -0.11 -1.886 0.001 -0.11 -1.895 <	Summer	Alsubheen et al 2017	-1.010	0.384	0.147	-1.763	-0.258	-2.632	0.008	
Summer Knan et al 2017 -0.279 0.169 0.028 -0.610 0.051 -1.857 0.097 Summer Latiri et al 2017 -0.005 0.181 0.033 -0.559 0.526 0.009 Summer Malekmakan et al 2017 -0.056 0.106 0.011 -0.557 -0.142 -3.299 0.001 Summer Molasmadzade et al 2017 -0.563 0.282 -0.085 -0.0142 -3.299 0.001 Summer Norouzy et al 2017 -0.256 0.104 -0.155 -0.124 -0.309 -0.083 Summer Pallayoxa et al 2017 -0.236 0.124 0.015 -0.175 0.283 Summer Royand Bandyopadhyay2017 -0.246 0.202 -0.284 -0.013 0.990	Summer	Bakki et al 2017	-0.092	0.115	0.013	-0.316	0.133	-0.800	0.423	
Summer Latifier is al 2017 -0.287 0.113 -0.013 -0.016 0.013 -0.016 0.0010 Summer Malekmakan et al 2017 -0.350 0.350 -0.255 -3.289 0.001 Summer Mohammadzade et al 2017 -0.561 0.197 0.039 -1.036 -0.255 -3.399 0.001 Summer Mohammadzade et al 2017 -0.563 0.229 0.035 -0.101 1.135 1.277 0.054 Summer Ongsara et al 2017 -0.235 0.1167 0.028 -0.009 -1.888 0.059 Summer Pallayova et al 2017 -0.236 0.122 0.052 -0.684 0.009 -1.888 0.058 Summer Rolandyagathyay 2017 -0.317 0.167 0.022 0.228 -0.010 -1.990 Summer Nachwak et al 2018 -0.021 0.002 0.0027 -0.184 -3.303 0.001 Summer Faris et al 2019 -0.454 0.175 0.012 -1.914 0.057	Summer	Khan et al 2017 Kivoni et al 2017	-0.279	0.169	0.028	-0.610	0.051	-1.657	0.097	
Summer Malekmakan et al 2017 -0.350 0.106 0.011 -0.557 -0.142 -3.289 0.001 Summer Mohammadzade et al 2017 -0.661 0.197 0.039 -1.036 -0.265 -3.309 0.001 Summer Norouzy et al 2017 -0.251 0.112 0.015 -0.478 0.009 -1.888 0.059 Summer Ongsara et al 2017 -0.246 0.229 0.052 -0.540 0.001 -1.185 0.283 Summer Rolad Bandyopadhyay 2017 -0.170 0.167 0.282 0.052 -0.540 0.011 -1.955 0.233 Summer Rolad Bandyopadhyay 2017 -0.170 0.168 0.001	Summer	Latiri et al 2017	-0.297	0.113	0.013	-0.518	-0.075	-2.620	0.009	
Summer Mohammadzade et al 2017 -0.661 0.197 0.039 -1.036 -0.265 -3.309 0.001 Summer Norouzy et al 2017 -0.236 0.292 0.085 -0.010 1.135 1.927 0.054 Summer Pollayova et al 2017 -0.236 0.124 0.015 -0.778 0.009 - Summer Pallayova et al 2017 -0.246 0.229 0.052 -0.645 0.011 1.185 0.058 Summer Roy and Bandyopadhyay 2017 -0.317 0.167 0.022 -0.024 0.003 -0.990 Summer Nachwak et al 2018 -0.002 0.148 0.002 -0.110 -3.296 0.001 Summer Faris et al 2019 -0.454 0.137 0.019 -0.227 0.019 -0.21 Summer Haghlight et al 2019 -0.454 0.137 0.019 -0.228 0.021 -3.018 0.001 Summer Haghlight et al 2019 -0.454 0.171 <th0.229< th=""> -0.229 3.889<</th0.229<>	Summer	Malekmakan et al 2017	-0.350	0.106	0.011	-0.557	-0.142	-3.299	0.001	
Summer Norouzy et al 2017 0.563 0.292 0.085 -0.010 1.135 1.927 0.054 Summer Ongasa et al 2017 -0.236 0.124 0.005 -0.488 0.009 -1.888 0.059 Summer Pallayoxa et al 2017 -0.246 0.229 0.052 -0.694 0.203 -1.075 0.283 Summer Roy and Bandyopadhyay 2017 -0.317 0.167 0.028 -0.494 0.013 0.190 Summer Nachwa et al 2018 -0.020 0.148 0.022 -0.292 0.288 0.013 0.990 Summer Nachwa et al 2019 -0.454 0.137 0.012 -1.001 -3.296 0.001 - Summer Farse tya and Sapwarobol 2018 -0.630 0.200 0.044 -1.03 -0.282 -3.300 0.001 - Summer Farse tya and Sapwarobol 2018 -0.640 0.118 -0.217 -0.104 -3.030 0.001 - - Summer Haghighi et al 2019 <td>Summer</td> <td>Mohammadzade et al 2017</td> <td>-0.651</td> <td>0.197</td> <td>0.039</td> <td>-1.036</td> <td>-0.265</td> <td>-3.309</td> <td>0.001</td> <td></td>	Summer	Mohammadzade et al 2017	-0.651	0.197	0.039	-1.036	-0.265	-3.309	0.001	
Summer Pailsgive at al 2017 -0.230 0.124 0.0105 -0.476 0.0205 -1.888 0.039 Summer Pailsgive at al 2017 -0.246 0.229 0.052 -0.084 0.203 -1.075 0.283 Summer Roy and Bandyopadhyay 2017 -0.317 0.167 0.028 -0.045 0.011 -1.885 0.058 Summer AL-barin and Aljaloud 2018 -0.002 0.144 0.022 -0.292 0.329 0.001 - Summer Praseba and Sapwarobol 2018 -0.693 0.209 0.044 -1.103 -0.282 -3.309 0.001 - Summer Prais et al 2019 -0.454 0.137 0.0176 0.012 -1801 0.057 - Summer Jarrar et al 2019 -0.264 0.021 -3.108 0.000 - - Summer Rahbar et al 2019 -0.268 0.017 -0.229 -3.899 0.000 - - Summer Alan et al 2019 -0.460 0	Summer	Norouzy et al 2017	0.563	0.292	0.085	-0.010	1.135	1.927	0.054	
Summer Roy and Bandyopadhyay 2017 -0.317 0.167 0.028 -0.445 0.011 -1.895 0.058 Summer AL-barha and Ajaloud 2018 -0.002 0.143 0.022 -0.292 0.288 -0.013 0.990 Summer Nachwak et al 2018 -0.021 0.082 0.007 -0.432 -0.110 -3.296 0.001 - Summer Prasetya and Sapwarobol 2018 0.693 0.209 0.044 -1.103 -0.282 -3.309 0.001 - Summer Faris et al 2019 -0.454 0.137 0.019 -0.723 -0.014 -3.003 0.001 - Summer Jarrar et al 2019 -0.455 0.175 0.001 -0.884 0.002 - Summer Aabbar et al 2019 -0.460 0.118 0.014 -0.299 -3.899 0.000 - Summer -0.376 0.031 0.001 -0.477 -0.182 -0.334 -11973 0.000 - Winter <td< td=""><td>Summer</td><td>Pallavova et al 2017</td><td>-0.235</td><td>0.124</td><td>0.015</td><td>-0.478</td><td>0.203</td><td>-1.008</td><td>0.059</td><td></td></td<>	Summer	Pallavova et al 2017	-0.235	0.124	0.015	-0.478	0.203	-1.008	0.059	
Summer AL-barha and Aljaloud 2018 -0.002 0.148 0.022 0.228 0.013 0.990 Summer Nachwak et al 2018 -0.021 0.082 0.007 -0.432 -0.110 -3.296 0.001 Summer Parasetya and Sapwarobol 2018 -0.693 0.209 0.044 -1.03 -0.286 0.001 Summer Faris et al 2019 -0.454 0.137 0.019 -0.723 -0.184 -3.309 0.001 Summer Haghighi et al 2019 -0.455 0.175 0.031 -0.888 -0.201 -3.108 0.002 Summer Jarrat et al 2019 -0.464 0.0621 -3.108 0.002	Summer	Roy and Bandyopadhyay 201	7 -0.317	0.167	0.028	-0.645	0.011	-1.895	0.058	
Summer Nacrwar et al 2018 -0.271 0.082 0.007 -0.432 0.110 -3.296 0.001 Summer Prase by and Sagwarobol 2018 -0.680 0.209 0.044 -1.010 -3.296 0.001 - Summer Faris et al 2019 -0.454 0.137 0.019 -0.723 -0.184 -3.309 0.001 - Summer Haghighi et al 2019 -0.454 0.137 0.019 -0.723 -0.184 -3.309 0.001 - Summer Haghighi et al 2019 -0.454 0.177 0.012 -1.901 0.057 - Summer Rahbar et al 2019 -0.460 0.118 0.047 -1.688 0.001 - Summer Alam et al 2019 -0.460 0.118 0.014 -0.691 -0.229 3.899 0.000 - Summer -0.376 0.031 0.001 -0.437 -0.182 0.033 -0.314 -1.1973 0.000 - - Summer <td< td=""><td>Summer</td><td>AL-barha and Aljaloud 2018</td><td>-0.002</td><td>0.148</td><td>0.022</td><td>-0.292</td><td>0.288</td><td>-0.013</td><td>0.990</td><td></td></td<>	Summer	AL-barha and Aljaloud 2018	-0.002	0.148	0.022	-0.292	0.288	-0.013	0.990	
Summer Hasers alth segmentation of 0.083 0.203 0.044 -1.103 0.0262 -3.009 0.001 Summer Faise tal 2019 -0.454 0.137 0.019 -0.723 -0.184 -3.033 0.001 Summer Haghighi et al 2019 -0.362 0.201 0.040 -0.776 0.012 -1.901 0.057 Summer Jarar et al 2019 -0.545 0.175 0.031 -0.884 -0.201 -3.108 0.002 Summer Rabar et al 2019 -0.249 0.171 0.029 -3.899 0.000	Summer	Nachvak et al 2018 Presetra and Senvershel 22	-0.271	0.082	0.007	-0.432	-0.110	-3.296	0.001	
Summer Haghighi et al 2019 -0.382 0.201 0.040 -0.776 0.12 -1.801 0.057 Summer Jarrar et al 2019 -0.545 0.175 0.031 -0.888 -0.201 -3.108 0.002 Summer Rahbar et al 2019 -0.269 0.171 0.029 -3.808 0.001 - Summer Alam et al 2019 -0.460 0.118 0.014 -0.624 0.047 1.668 0.000 - Summer -0.376 0.031 -0.031 -0.314 -11973 0.000 - - Winter EI AH et al 1995 -0.443 0.252 0.054 0.006 - - Winter Finch et al 1997 -0.473 0.182 0.033 -0.831 -0.116 -2.596 0.009 - - Winter Malson istal 1998 -0.0409 0.215 0.046 0.226 -0.485 0.528 - - - Winter Bilto 1998 -0.229 0.	Summer	Faris et al 2019	-0.454	0.209	0.044	-0.723	-0.282	-3.309	0.001	
Summer Jarrar et al 2019 -0.545 0.175 0.031 -0.888 -0.201 -3.108 0.002 Summer Rahbar et al 2019 -0.269 0.171 0.029 -0.624 0.047 -1.668 0.091 Summer Alam et al 2019 -0.460 0.118 0.014 -0.259 -3.899 0.000 Summer -0.376 0.031 0.001 -0.437 -0.182 0.031 -0.116 -1.1914 0.056 Winter El Alt et al 1995 -0.483 0.252 0.064 -0.977 0.012 -1.1914 0.056 Winter Adiouni et al 1997 -0.473 0.182 0.033 -0.311 -1.1914 0.056 Winter Finch et al 1998 -0.074 0.153 0.024 -0.375 0.628 Winter Bilto 1998 -0.074 0.153 0.024 -0.375 0.049 Winter Bilto 1998 -0.074 0.158 0.062 0.011 -1.967 0.0	Summer	Haghighi et al 2019	-0.382	0.201	0.040	-0.776	0.012	-1.901	0.057	
Summer Rahbar et al 2019 -0.289 0.171 0.029 -0.524 0.047 -1.668 0.091 Summer Alam et al 2019 -0.460 0.118 0.047 -1.668 0.091 Summer -0.376 0.031 0.001 -0.437 -0.3899 0.000 - Summer -0.376 0.031 0.001 -0.437 -0.314 -11973 0.000 - Winter El Ab et al 1995 -0.483 0.252 0.064 -0.971 0.012 -1.914 0.056 - Winter Flinch et al 1998 -0.074 0.153 0.024 -0.331 -0.112 -1.904 0.057 Winter Maislos et al 1998 -0.029 0.117 0.016 -0.529 0.0167 - Winter Bito 1998 -0.229 0.117 0.014 -0.517 - - Winter Kaylcoglu et al 1998 -0.473 0.182 0.033 -0.819 -0.004 - - <td< td=""><td>Summer</td><td>Jarrar et al 2019</td><td>-0.545</td><td>0.175</td><td>0.031</td><td>-0.888</td><td>-0.201</td><td>-3.108</td><td>0.002</td><td></td></td<>	Summer	Jarrar et al 2019	-0.545	0.175	0.031	-0.888	-0.201	-3.108	0.002	
Comment Cutator Ed 12015 CU100 CU110 CU114 CU219 SUBM CU200 SUBM CU210 SUBM SUBM CU210 SUBM SUBM </td <td>Summer</td> <td>Rahbar et al 2019 Alam et al 2010</td> <td>-0.289</td> <td>0.171</td> <td>0.029</td> <td>-0.624</td> <td>0.047</td> <td>-1.688</td> <td>0.091</td> <td></td>	Summer	Rahbar et al 2019 Alam et al 2010	-0.289	0.171	0.029	-0.624	0.047	-1.688	0.091	
Winter El Ati et al 1995 -0.483 0.252 0.064 -0.977 0.112 -1.914 0.056 Winter Adlouni et al 1997 -0.473 0.182 0.033 -0.831 -0.116 -2.596 0.009 Winter Flinch et al 1998 -0.049 0.215 0.042 -0.375 0.226 -0.485 0.628 Winter Maislos et al 1998 -0.0409 0.215 0.044 -0.375 0.226 -0.485 0.628 Winter Bilto 1998 -0.229 0.117 0.014 -0.485 0.627 0.449 Winter Bilto 1998 -0.229 0.117 0.014 -0.485 0.009 Winter Kaykcoglu et al 1998 -0.473 0.182 0.033 -0.011 -1.997 0.049 Winter Kaykcoglu et al 1998 -0.473 0.182 0.033 -0.011 -2.966 0.009 Winter Akayi et al 2000 -0.271 0.143 0.021 -0.552	Summer	Prath et al 2019	-0.460	0.118	0.014	-0.691	-0.229	-3.899	0.000	
Winter Adlouni et al 1997 -0.473 0.162 0.033 -0.831 -0.116 -2.596 0.009	Winter	El Ati et al 1995	-0.483	0.252	0.064	-0.977	0.012	-1.914	0.056	
Winter Finch et al 1998 -0.074 0.163 0.024 -0.375 0.226 -0.485 0.628 Winter Maislos et al 1998 -0.040 0.215 0.046 -0.829 0.012 -1904 0.057 Winter Bilto 1998 -0.229 0.117 0.014 -0.458 -0.001 -1.967 0.049 Winter Kaykcoglu ét al 1998 -0.473 0.182 0.033 -0.311 -2.596 0.009 Winter Akanji et al 2000 -0.271 0.143 0.021 -0.552 0.010 -1.981 0.059 Winter -0.298 0.062 0.004 -0.477 -4.826 0.000	Winter	Adlouni et al 1997	-0.473	0.182	0.033	-0.831	-0.116	-2.596	0.009	
winner miasubs et al 1998 -0.449 0.212 0.049 -0.629 0.012 -1.904 0.037 Winter Bilto 1998 -0.229 0.117 0.014 -0.458 -0.001 -1.967 0.049 Winter Kaykoglu et al 1998 -0.473 0.182 0.031 -0.116 2.596 0.009 Winter Akanji et al 2000 -0.271 0.143 0.021 -0.552 0.010 -1.891 0.059 Winter -0.298 0.062 0.004 -0.419 -0.177 -4.826 0.000	Winter	Finch et al 1998	-0.074	0.153	0.024	-0.375	0.226	-0.485	0.628	
Winter Kaykcoglu et al 1998 -0.473 0.182 0.033 -0.831 -0.116 -2.596 0.009 Winter Akanji et al 2000 -0.271 0.143 0.021 -0.552 0.010 -1.891 0.059 Winter -0.298 0.062 0.004 -0.419 -0.177 -4.826 0.000	Winter	maisius et al 1998 Bilto 1998	-0.409	0.215	0.046	-0.829	0.012	-1.904	0.05/	
Winter Akanji et al 2000 -0.271 0.143 0.021 -0.552 0.010 -1.891 0.059 Winter -0.298 0.062 0.004 -0.419 -0.177 -4.826 0.000 Image: constraint of the second	Winter	Kaykcoglu et al 1998	-0.473	0.182	0.033	-0.831	-0.116	-2.596	0.009	
winter -0.298 0.062 0.004 -0.419 -0.177 -4.826 0.000 ♦	Winter	Akanji et al 2000	-0.271	0.143	0.021	-0.552	0.010	-1.891	0.059	
	winter		-0.298	0.062	0.004	-0.419	-0.177	-4.826	0.000	

Fig. 8 Hedges' *g* values for changes in body weight for studies included in the meta-analysis according to the season during which the study was conducted. Hedges' *g* value is considered small when value = 0.2, medium = 0.5, large = 0.8.

Journal : Large 394 Article No : 2216 Pages : 26 MS Code : 2216 Dispatch : 7	3-2020
--	--------

- ⁵⁷¹ criteria applied give a more robust and reliable estimate for ⁵⁷² the efect size. The last strength is that we performed sub-
- 573 group analyses and meta-regressions (adjustment for covari-

ates) which were not performed before. However, the current

work entailed two major limitations that should be considered: irst, the fact that the study population was mostly men;

- 576 ered: irst, the fact that the study population was mostly men;
 577 makes it diicult to generalize the results on both male and
- 577 makes it discult to generalize the results on both male and 578 female fasting people. Second, calorie intakes pre- and post-
- 578 Terrate rating people: Occorna, calorie intakce pre- and poor
- 579 RDIF were not measured in the analysis, a matter that should
- 580 be considered in any future research on Ramadan fasting and

581 body weight changes.

582 Conclusions

583 In conclusion, RDIF elicits a signiicant, but small, reduc-

- tion in body weight. The heterogeneity in the indings likelyrelects the variable dietary and lifestyle behaviors practiced
- 586 during the month of Ramadan, along with the variation in
- the time duration of fasting and variable climatic and geo-
- 588 graphical conditions surrounding fasting people in different
- countries. Through this work, it can also be emphasized that
- 590 weight loss is by no means universal and that weight gain

591 is possible and does happen in a significant group of people

592 who fast during Ramadan.

593 Supplementary 1 for combined means 594 calculation

https://www.dropbox.com/s/nds744tcpqhsc5g/Supplementary%201%20222020.docx?dl=0

597 Supplementary 2 for quality assessment

598 https://www.dropbox.com/s/dhol3u83kpgbgrq/Supplement 599 ary%202%20222020.doc?dl=0

600 Data repository link

- 601 https://www.dropbox.com/s/40t9f6w70o8lbtd/Final
- 602 %20Ramadan%20meta%20data%20472019%20%28Wei
- 603 ght%20and%20BMI%29.xlsx?dl=0

604 MOOSE checklist repository link

- 605 https://www.dropbox.com/s/u23n0hlk4fb457d/MOOSE
- 606 _Checklist%2011122019%20FINAL.pdf?dl=0

Author contributions MF and HJ contributed to the conception and design of the work. MF and HJ participated in researching and col-607 lecting articles. MF and JS participated in the article reviews and data 608 extraction. HJ performed all data analyses. MF and HJ contributed 609 to drafting the manuscript, and CC contributed to critically revising 610 the manuscript and provided intellectual contributions to strengthen 611 the manuscript. All authors were involved in writing the paper and 612 approved the inal version for publication. 613 614 Funding The current work did not receive any form of inancing from any institution or funding body. 615 616 Compliance with ethical standards 617 Conflict of interest The authors have no conlicts of interest to declare. 618

Ethical approval This article does not contain any studies with619human participants performed by any of the authors620

Informed consent For this type of research, formal consent is not required. 621

References

- 1. Tremmel M, Gerdtham U-G, Nilsson P, Saha S (2017)
 624

 Eco-nomic burden of obesity: a systematic literature
 625

 review. Int J Environ Res Public Health 14:435.
 626

 https://doi.org/10.3390/ ijerph14040435
 627
- Varady K (2011) Intermittent versus daily calorie restriction: which diet regimen is more efective for weight loss? Obesity Rev 12:e593–e601
- Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmaco Economics 33:673–689. https://doi. org/10.1007/s40273-014-0243-x
- Sundfør T, Svendsen M (2018) Efect of intermittent versus continuous energy restriction on weight loss, maintenance, and cardiometabolic risk: a randomized 1year trial. Nutr Metab Cardiovasc Dis 28:698–706
- Harvie M, Wright C, Pegington M, McMullan D, Mitchell E, Martin B, Cutler RG, Evans G, Whiteside S, Maudsley S, Camandola S, Wang R, Carlson OD, Egan JM, Mattson MP, Howell A (2013) The efect of intermittent energy and carbo-hydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br J Nutri 110:1534–1547. https://doi.org/10.1017/s000711451 3000792
- Freire R (2020) Scientiic evidence of diets for weight loss: diferent macronutrient composition, intermittent fasting, and popular diets. Nutrition 69:110549. https://doi.org/10.1016/j. nut.2019.07.001
- 7. Azizi F (2010) Islamic fasting and health. Ann Nutr Metab 56:273–282
- 8. Sakr AH (1975) Fasting in Islam. J Am Diet Assoc 67:17–21
- Davis CS, Clarke RE, Coulter SN, Rounsefell KN, Walker RE, Rauch CE, Huggins CE, Ryan L (2015) Intermittent energy restriction and weight loss: a systematic review. Euro J Clin Nutr 70:292. https://doi.org/10.1038/ejcn.2015.195
- Seimon RV, Roekenes JA, Zibellini J, Zhu B, Gibson AA, Hills AP, Wood RE, King NA, Byrne NM, Sainsbury A (2015) Do intermittent diets provide physiological beneits over continuous diets for weight loss? A systematic review of clinical trials. Mol Cell Endoc 418:153–172

623

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

- Headland M, Clifton P, Carter S, Keogh J (2016) Weight-loss
 outcomes: a systematic review and meta-analysis of intermittent
 energy restriction trials lasting a minimum of 6 months. Nutri 8:354. https://doi.org/10.3390/nu8060354
- 12. Antoni R, Johnston KL, Collins AL, Robertson MD (2017)
 Efects of intermittent fasting on glucose and lipid metabolism.
 Proceed Nutr Soci 76:361–368
- 13. Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ (2011) Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available indings. Nutr J 10:107. https://doi. org/10.1186/1475-2891-10-107
- 14. Trepanowski JF, Kroeger CM, Barnosky A, Klempel MC, Bhutani S, Hoddy KK, Gabel K, Freels S, Rigdon J, Rood J (2017)
 Efect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Int Med 177:930–938
- Moro T, Tinsley G, Bianco A, Marcolin G, Pacelli QF, Battaglia
 G, Palma A, Gentil P, Neri M, Paoli A (2016) Efects of eight
 weeks of time-restricted feeding (16/8) on basal metabolism,
 maximal strength, body composition, inlammation, and cardiovascular risk factors in resistance-trained males. J Transl Med
 14:290
- 16. Obert J, Pearlman M, Obert L, Chapin S (2017) Popular weight
 loss strategies: a review of four weight loss techniques. Curr
 Gastroenterol Rep 19(12):61
- Patterson RE, Laughlin GA, Lacroix AZ, Hartman SJ, Natarajan L, Senger CM, Martínez ME, Villaseñor A, Sears DD,
 Marinac CR, Gallo LC (2015) Intermittent fasting and human metabolic health. J Acad Nutr Diet 115:1203–1212. https://doi.
 org/10.1016/j.jand.2015.02.018
- 18. Patterson RE, Sears DD (2017) Metabolic efects of intermittent
 fasting. Annu Rev Nutr 37:371–393. https://doi.org/10.1146/
 annurev-nutr-071816-064634
- Faris M, Jahrami HA, Alsibai J, Obaideen AA (2019) Impact
 of Ramadan diurnal intermittent fasting on metabolic syndrome
 components in healthy, non-athletic Muslim people aged over 15
 years: a systematic review and meta-analysis. Br J Nutr 4:1–22.
 https://doi.org/10.1017/S000711451900254X
- 20. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Metaanalysis of observational studies in epidemiology: a proposal
 for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012. https://doi.
 org/10.1001/jama.283.15.2008
- 21. Nachvak SM, Pasdar Y, Pirsaheb S, Darbandi M, Niazi P,
 Mostafai R, Speakman JR (2018) Efects of Ramadan on food
 intake, glucose homeostasis, lipid proiles, and body composition. Eur J Clin Nutr 73:594–600. https://doi.org/10.1038/s4143
 0-018-0189-8
- 22. Meo SA, Hassan A (2015) Physiological changes during fasting
 in Ramadan. J Pak Med Assoc 65:S6–S14
- Radhakishun N, Blokhuis C, van Vliet M, von Rosenstiel I, Weijer O, Heymans M, Beijnen J, Brandjes D, Diamant M (2014)
 Intermittent fasting during Ramadan causes a transient increase
 in total, LDL, and HDL cholesterols and hs-CRP in ethnic obese
 adolescents. Eur J Ped 173:1103–1106
- Altman D, Machin D, Bryant T, Gardner M (2013) Statistics with
 conidence: conidence intervals and statistical guidelines. Wiley,
 Hoboken
- 722 25. Borenstein M, Hedges L, Higgins J, Rothstein H (2005) Compre 723 hensive meta-analysis (Vers 2). Biostat, Inc, Englewood Clifs
- Higgins JP, Green S (2011) Cochrane handbook for systematic
 reviews of interventions-Identifying and measuring heterogene ity, 4th edn. Wiley, Hoboken

27. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions-Incorporating heterogeneity into random-efects models, 4th edn. Wiley, Hoboken 727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752 753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

792

- Chen H, Manning AK, Dupuis J (2012) A method of moments estimator for random efect multivariate meta-analysis. Biometrics 68:1278–1284
- 29. Duval S, Tweedie R (2000) A nonparametric "trim and ill" method of accounting for publication bias in meta-analysis. J Am Stat Ass 95:89–98
- Kayikçioğlu Ö, Erkin EF, Erakgün T (1998) The inluence of religious fasting on basal tear secretion and tear break-up time. Intern Ophthal 22:67–69
- 31. Trepanowski JF, Bloomer RJ (2010) The impact of religious fasting on human health. Nutr J 9:57. https://doi. org/10.1186/1475-2891-9-57
- 32. Sadeghirad B, Motaghipisheh S, Kolahdooz F, Zahedi MJ, Haghdoost AA (2014) Islamic fasting and weight loss: a systematic review and meta-analysis. Pub Health Nutr 17:396–406
- 33. Fernando H, Zibellini J, Harris R, Seimon R, Sainsbury A (2019) Efect of Ramadan fasting on weight and body composition in healthy non-athlete adults: a systematic review and meta-analysis. Nutrients 11:478. https://doi.org/10.3390/nu11020478
- 34. Kul S, Savaş E, Öztürk ZA, Karadağ G (2014) Does Ramadan fasting alter body weight and blood lipids and fasting blood glucose in a healthy population? A meta-analysis. J Relig Health 53:929–942
- 35. Al-barha NS, Aljaloud KS (2018) The efect of Ramadan fasting on body composition and metabolic syndrome in apparently healthy men. Am J Mens Health 13(1):1557988318816925. https ://doi.org/10.1177/1557988318816925
- Norouzy A, Salehi M, Philippou E, Arabi H, Shiva F, Mehrnoosh S, Mohajeri S, Mohajeri SR, Motaghedi Larijani A, Nematy M (2013) Efect of fasting in Ramadan on body composition and nutritional intake: a prospective study. J Hum Nutr Diet 26:97–104
- Ramadan J (2002) Does fasting during Ramadan alter body composition, blood constituents, and physical performance? Med Princ Pract 11:41–46
- Fahrial Syam A, Suryani Sobur C, Abdullah M, Makmun D (2016) Ramadan fasting decreases body fat but not protein mass. Int J Endocrinol Metab 14:e29687–e29687. https://doi. org/10.5812/ijem.29687
- 39. Yucel A, Degirmenci B, Acar M, Albayrak R, Haktanir A (2004) The efect of fasting month of Ramadan on the abdominal fat distribution: assessment by computed tomography. Tohoku J Exp Med 204:179–187
- 40. Faris M, Madkour MI, Obaideen AK, Dalah EZ, Hasan HA, Radwan HM, Jahrami HA, Hamdy O, Mohammad MG (2019) Efect of Ramadan diurnal fasting on visceral adiposity and serum adipokines in overweight and obese individuals. Diabetes Res Clin Pract 153:166–175
- 41. Barkia A, Mohamed K, Smaoui M, Zouari N, Hammami M, Nasri M (2011) Change of diet, plasma lipids, lipoproteins, and fatty acids during Ramadan: a controversial association of the considered Ramadan model with atherosclerosis risk. J Health Popul Nutr 29(5):486–493
- 42. Lamri-Senhadji M, El Kebir B, BellevilleBouchenak JMJSMJ (2009) Assessment of dietary consumption and time-course of changes in serum lipids and lipoproteins before, during, and after Ramadan in young Algerian adults. Singap Med J 50:288–294
- 43. Abedelmalek S, Šouissi N, Takayuki A, Hadouk S, Tabka Z (2011) Efect of acute maximal exercise on circulating levels of interleukin-12 during Ramadan fasting. Asian J Sport Med 2:154–160 790
 44. Alzoghaibi MA, Pandi-Perumal SR, Sharif MM, BaHammam AS 791
- 44. Alzoghaibi MA, Pandi-Perumal SR, Sharif MM, BaHammam AS (2014) Diurnal intermittent fasting during Ramadan: the efects

861

org/10.1371/journal.pone.0092214	793	on leptin and ghrelin levels. PLoS ONE 9:e92214. https://doi.
	794	org/10.1371/journal.pone.0092214

- 45. Develioglu ON, Kucur M, Ipek HD, Celebi S, Can G, Kulekci M
 (2013) Efects of Ramadan fasting on serum immunoglobulin G
 and M, and salivary immunoglobulin A concentrations. J Int Med
 Res 41:463–472. https://doi.org/10.1177/0300060513476424
- 46. Faris M, Jahrami HA, Obaideen AA, Madkour MI (2019) Impact
 of diurnal intermittent fasting during Ramadan on inlammatory
 and oxidative stress markers in healthy people: systematic review
 and meta-analysis. J Nutr Intermed Metab 15:18–26. https://doi.
 org/10.1016/j.jnim.2018.11.005
- 47. Adawi M, Watad A, Brown S, Aazza K, Aazza H, Zouhir M,
 Sharif K, Ghanayem K, Farah R, Mahagna H (2017) Ramadan
 fasting exerts immunomodulatory efects: insights from a systematic review. Front Immunol 8:1144
- 48. Akrami FM, Ahmadi Z, Hassanshahi G, Akrami EM, Ravari
 A, Ghalebi SR (2013) Dose Ramadan fasting afects inlammatory responses: evidences for modulatory roles of this unique
 nutritional status via chemokine network. Iran J Basic Med Sci
 16:1217–1222
- 49. Mohammadzade F, Vakili M, Seyediniaki A, Amirkhanloo S,
 Farajolahi M, Akbari H (2017) Efect of prolonged intermittent
 fasting in Ramadan on biochemical and inlammatory parameters
 of healthy men. J Clin Basic Res 1:38–46
- 50. Mushtaq R, Akram A, Mushtaq R, Khwaja S, Jo ASJPMS (2019)
 The role of inlammatory markers following Ramadan fasting.
 Pak J Med Sci 35(77–81):35
- Shariatpanahi MV, Shariatpanahi ZV, Shahbazi S, Moshtaqi M
 (2012) Efect of fasting with two meals on BMI and inlamma tory markers of metabolic syndrome. Pak J Biol Sci 15:255–258
- 52. Ibrahim WH, Habib HM, Jarrar AH, AI-Baz SA (2008) Efect
 of Ramadan fasting on markers of oxidative stress and serum
 biochemical markers of cellular damage in healthy subjects. Ann
 Nutr Met. https://doi.org/10.1159/000172979
- 827 53. Mahmood MM, Mohammed KI (2010) Efect of Ramadan fasting
 828 on the levels of IL-1α, IL-2, IL-6, and IL-8 cytokines. Diyala J
 829 Pure Sci 6:308–313
- Pallayova M, Zaghloul HB, Aror T, Choudhury SM, Omar OM, Chagoury OL, Taheri S (2017) Investigating physiological glucose excursions before, during, and after Ramadan in adults without diabetes mellitus. Physiol Behav 179:110–115. https://doi.
 org/10.1016/j.physbeh.2017.05.032
- 55. Prasetya G, Sapwarobol S (2018) Intermittent fasting dur ing Ramadan improves insulin sensitivity and anthropometric
 parameters in healthy young Muslim men. Am J Lifestyle Med
 1559827618815430.
- 1559827618815430.
 56. Alkandari JR, Maughan RJ, Roky R, Aziz AR, Karli U (2012)
 The implications of Ramadan fasting for human health and wellbeing. J Sport Sci 30:S9–S19
- Alam I, Gul R, Chong J, Tan CTY, Chin HX, Wong G, Doggui
 R, Larbi A (2019) Recurrent circadian fasting (RCF) improves
 blood pressure, biomarkers of cardiometabolic risk and regulates
 inlammation in men. J Transl Med 17:1–29
- 846 58. Alinezhad-Namaghi M, Salehi M (2016) Efects of Ramadan
 847 fasting on blood pressure in hypertensive patients: a systematic
 848 review. J Fasting Health 4:17–21
- 59. Assadi M, Akrami A, Beikzadeh F, Seyedabadi M, Nabipour I, Larijani B, Afarid M, Seidali E (2011) Impact of Ramadan fasting on intraocular pressure, visual acuity and refractive errors. Singap Med J 52:263–266
- Malekmakan L, Sayadi M, Pakfetrat M, Moosavi B, Mousavinezhad H (2017) The Efect of fasting on anthropometric parameters and blood pressure levels: A report from southern Iran. Int Cardiov Res J 11(4)
- 857 61. Norouzy A, Hasanzade Daloee M, Khoshnasab AH, Kho858 shnasab A, Farrokhi J, Nematy M, Safarian M, Nezafati P,

Alinezhad-Namaghi M (2017) Trend of blood pressure in hypertensive and normotensive volunteers during Ramadan fasting. Blood Press Monit 22:253–257

- 62. Sijavand MSA, Shahsavan F, Askarizadeh F, Namaty M, Heravian J, Mahmodi Z, Rakhshandadi T, Sedaghat MR (2015) Efect of Ramadan fasting on blood pressure and lipid proiles. J Nutr Fasting Health 3:126–131
- 63. Trabelsi K, El Abed K, Trepanowski JF, Stannard SR, Ghlissi Z, Ghozzi H, Masmoudi L, Jammoussi K, Hakim A (2011) Efects of Ramadan fasting on biochemical and anthropometric parameters in physically active men. Asian J Sport Med 2:134–144
- 64. Sweileh N, Schnitzler A, Hunter G, Davis B (1992) Body composition and energy metabolism in resting and exercising Muslims during Ramadan fast. J Sport Med Physi Fit 32:156–163
- Stannard SR, Thompson MW (2008) The efect of participation in Ramadan on substrate selection during submaximal cycling exercise. J Sci Med Sport 11:510–517. https://doi.org/10.1016/j. jsams.2007.03.003
- 66. Racinais S, Periard JD, Li CK, Grantham J (2012) Activity patterns, body composition, and muscle function during Ramadan in a Middle-East Muslim country. Int J Sports Med 33:641–646. https://doi.org/10.1055/s-0032-1304645
- 67. Takruri HR (1989) Efect of fasting in Ramadan on body weight. Saudi Med J 10:491–494
- Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, de Koning L, Delgado-Lista J, Díaz-López A, Drevon CA (2017) Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 75(5):307–326
- Abd El-Kader SM, Saiem Al-Dahr MH (2016) Impact of weight loss on oxidative stress and inlammatory cytokines in obese type 2 diabetic patients. Afr Health Sci 16:725–733. https://doi. org/10.4314/ahs.v16i3.12
- Huang C-J, McAllister MJ, Slusher AL, Webb HE, Mock JT, Acevedo EO (2015) Obesity-related oxidative stress: the impact of physical activity and diet manipulation. Sport Med 1:32. https ://doi.org/10.1186/s40798-015-0031-y
- 71. Hajer GR, van der Graaf Y, Olijhoek JK, Edlinger M, Visseren FL (2007) Low plasma levels of adiponectin are associated with low risk for future cardiovascular events in patients with clinical evident vascular disease. Am Heart J 154:750
- 72. Madkour MI, El-Serai AT, Jahrami HA, Sherif NM, Hassan RE, Awadallah S (2019) Ramadan diurnal intermittent fasting modulates SOD2, TFAM, Nrf2, and sirtuins (SIRT1, SIRT3) gene expressions in subjects with overweight and obesity. Diabetes Res Clin Pract 155:107801. https://doi.org/10.1016/j.diabr es.2019.107801
- Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissen M, Taskinen M-R, Groop L (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24:683–689
- 74. Feizollahzadeh S, Rasuli J, Kheirouri S, Alizadeh M (2014) Augmented plasma adiponectin after prolonged fasting during Ramadan in men. Health Promot Perspect 4:77–81
- Vardarli MC, Hammes H-P, Vardarli I (2014) Possible metabolic impact of Ramadan fasting in healthy men. Turk J Med Sci 44:1010–1020
- 76. Hosseini SRA, Sardar MA, Hejazi K, Farahati S (2015) The efects of aerobic exercise during Ramadan on the levels of leptin and adiponectin in overweight women. J Fasting Health 3:35–42
- Shirai K (2004) Obesity as the core of the metabolic syndrome and the management of coronary heart disease. Curr Med Res Opin 20:295–304
- 78. Khan Khattak MMA, Abu Bakar I, Yeim L (2012) Does religious fasting increase the fat-free mass (FFM) and reduce abdominal obesity? Nutr Food Sci 42:87–96

- - 950 951

925

926

927

928

934

935

936

937

938

939

940

941

942

943

944

945

946

- tive functions in healthy lean men. Nutrition 37:92-103 929 80. SaA A, Ismail M, Baker A, Blair J, Adebayo A, Kelly L, Chan-930 931 durkar V, Cheema S, Joanisse DR, Basset FA (2017) The efects 932 of diurnal Ramadan fasting on energy expenditure and substrate 933
 - oxidation in healthy men. Br J Nut 118:1023-1030 81. Rynders CA, Thomas EA, Zaman A, Pan Z, Catenacci VA, Melanson EL (2019) Efectiveness of intermittent fasting and timerestricted feeding compared to continuous energy restriction for weight loss. Nutrients 11:2442

79. Harder-Lauridsen NM, Rosenberg A, Benatti FB, Damm JA,

Thomsen C, Mortensen EL, Pedersen BK, Krogh-Madsen RJN

(2017) Ramadan model of intermittent fasting for 28 d had no

major efect on body composition, glucose metabolism, or cogni-

- 82. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Met 15:848-860
- 83. Chaix A, Lin T, Le HD, Chang MW, Panda S (2019) Timerestricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Met 29(303-319):e304
- 84. Chaix A, Zarrinpar A, Miu P, Panda S (2014) Time-restricted diverse nutritional challenges. Cell Met 20:991-1005
- 85. Alemán-Mateo H, Salazar G, Hernández-Triana M, Valencia M (2006) Total energy expenditure, resting metabolic rate and from Cuba, Chile, and Mexico. Eur J Clin Nutr 60:1258-1265 952
- 86. BaHammam A, Alrajeh M, Albabtain M, Bahammam S, Sharif 953 M (2010) Circadian pattern of sleep, energy expenditure, and 954 955 956 fasting of Ramadan. Appetite 54:426-429
- 87. Lessan N, Saadane I, Alkaf B, Hambly C, Buckley AJ, Finer 957 N, Speakman JR, Barakat MT (2018) The efects of Ramadan 958 959 fasting on activity and energy expenditure. Am J Clic Nutr 107:54-61 960
- 88. Al-Hourani H, Atoum M (2007) Body composition, nutrient 961 962 intake, and physical activity patterns in young women during Ramadan. Singap Med J 48:906-910 963
- 89. Faris M, Kacimi S, RaA A-K, Fararjeh MA, Bustanji YK, 964 965 Mohammad MK, Salem ML (2012) Intermittent fasting during Ramadan attenuates proinlammatory cytokines and immune 966 cells in healthy subjects. Nutr Res 32:947-955. https://doi. 967 org/10.1016/j.nutres.2012.06.021 968
- 90. Yeoh E, Zainudin SB, Loh WN, Chua CL, Fun S, Subramaniam 969
- T, Sum CF, Lim SC (2015) Fasting during Ramadan and associ-107. Adlouni A, Ghalim N, Benslimane A, Lecerf JM, Saïle R (1997) ated changes in glycemia, caloric intake and body composition^{body-weight} maintenance. Am J Clin Nutr 62:302– ³⁰⁷FastingduringRamadaninducesamarkedincreaseinhigh-den-₉₇₁
- with gender diferences in Singapore. Ann Acad Med Singap 972 44:202-206 973
- 91. Mazidi M, Karimi E, Rezaee P, Nematy M, Salehi M (2014) The 974 efects of Ramadan fasting on body composition. Shiraz E-Med 975 J 15:e19733 976
- 92. Lessan N, Ali T (2019) Energy metabolism and intermittent fast-977 ing: the Ramadan perspective. Nutrients 11:1192 978
- 93. Gotthardt JD, Verpeut JL, Yeomans BL, Yang JA, Yasrebi A, 979 Roepke TA, Bello NT (2015) Intermittent fasting promotes fat 980 981 loss with lean mass retention, increased hypothalamic norepi-
- nephrine content, and increased neuropeptide Y gene expression 982

96. Gabel K, Hoddy KK, Haggerty N, Song J, Kroeger CM, Trepanowski JF, Panda S, Varady KA (2018) Efects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: a pilot study. Nutr Healthy Aging 4:345-353

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1028

1029

1030

1031

1032

1049

1050

1051

1052

1053

1054

1055

- 97. Subhan MM, Siddiqui QA, Khan MN, Sabir S (2006) Does Ramadan fasting afect expiratory low rates in healthy subjects? Saudi Med J 2:1656–1660
- 98. Suriani I, Shamsuddin K, Khalib A, Hazizi A, Latifah A (2014) Ramadan fasting and voluntary fasting-potential weight loss and weight maintenance opportunity for overweight and obese Muslims. Int J Public Health Clin Sci 1:28-29
- 99. Ismail S, Manaf RA, Mahmud A, Shamsuddin K (2018) Inluence of an intervention program promoting voluntary fasting practices and its perceived barriers among overweight or obese Muslim women working in the public sector, Malaysia. Malay J Med Health Sci 14:1-6
- 100. Ismail S, Shamsuddin K, Khalib A, Hazizi A, Latifah A, Fad-Ian M (2015) Comparing the sustainability of an Islamic dietary intervention to maintain weight loss six months after Ramadan between intervention and control groups. J Fasting Health 3:86-93
- 1013 feeding is a preventative and therapeutic intervention against 101. Ismail S, Shamsuddin K, Latif KA, Saad HA, Majid LA, Oth-1014 man FM (2015) Voluntary fasting to control post-Ramadan 1015 weight gain among overweight and obese women. Sultan Qaboos Univ Medi J 1:e98-e104 1016
- 1017 physical activity level in free-living rural elderly men and women 102. Faris M, Jahrami H, Alhayki F, Alkhawaja N, Ali A, Aljeeb S, Abdulghani I, BaHammam A (2019) Efect of diurnal fasting on 1018 sleep during Ramadan: a systematic review and meta-analysis. 1019 Sleep Breath. https://doi.org/10.1007/s11325-019-01986-1 1020
- body temperature of young, healthy men during the intermittent 103. Almeneessier AS, BaHammam AA, Alzoghaibi M, Olaish AH, 1021 Nashwan SZ, BaHammam AS (2019) The efects of diurnal 1022 1023 intermittent fasting on pro-inlammatory cytokine levels while controlling for sleep/wake pattern, meal composition, and energy 1024 expenditure. PLoS ONE 14:e0226034. https://doi.org/10.1371/ 1025 journal.pone.0226034 1026 1027
 - 104. Fedail SS, Murphy D, Salih S, Bolton C, Harvey R (1982) Changes in certain blood constituents during Ramadan. Am J Clin Nutr 36:350-353
 - 105. Azizi F, Rasouli H (1987) Serum glucose, bilirubin, calcium, phosphorus, protein, and albumin concentrations during Ramadan. Med J Islamic Rep Iran 1:38-41
 - 106. El Ati J, Beji C, Danguir J (1995) Increased fat oxidation during Ramadan fasting in healthy women: an adaptative mechanism for

1033 1034 1035 1036 1037 1038 1039 sity lipoprotein cholesterol and decrease in low-density lipopro-1040 tein cholesterol. Ann Nutr Met 41:242-249 1041 108. Finch GM, Day JE, Welch DA, Rogers PJ (1998) Appetite 1042 changes under free-living conditions during Ramadan fasting. 1043 1044 109. Maislos M, Abou-Rabiah Y, Zuili I, Iordash S, Shany S (1998) 1045 Gorging and plasma HDL-cholesterol-the Ramadan model. Eur 1046 1047 110. Bilto YY (1998) Efects of Ramadan fasting on body weight and 1048 the biochemical and haematological parameters of the blood.

in diet-induced obese male mice. Endocrinology 157:679-691111. Akanji A, Mojiminiyi O, Abdella N (2000) Beneicial changes Harvie MN. Pegington M. Mattson MP. Frystyk J. Dillon B. Arab Gulf J Sci Res 16:1–14 inserumapoA-1 and its ratio to 94.

Appetite 31:159-170

J Clin Nutr 52:127–130

apo B and HDL in stable hyper-984

- Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG (2011) The 985 efects of intermittent or continuous energy restriction on weight 986
- 987 loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obesity 35:714 988
- 95. Di Francesco A, Di Germanio C, Bernier M, de Cabo R (2018) 989 A time to fast. Science 362:770-775 990

lipidaemic subjects after Ramadan fasting in Kuwait. Eur J Clin Nutr 54:508-513

Afrasiabi A, Hassanzadeh S, Sattarivand R, Mahboob S (2003) 112. Efects of Ramadan fasting on serum lipid proiles on 2 hyperlipidemic groups with or without diet pattern. Saudi Med J 24:23-26

13

- 113. Kassab S, Abdul-Ghafar T, Nagalla DS, Sachdeva U, Nayar U 1056 (2003) Serum leptin and insulin levels during chronic diurnal 1057 fasting. Asia Paciic J Clin Nutr 12:483-487 1058
- 114. Fakhrzadeh H, Larijani B, Sanjari M, Baradar-Jalili R, Amini M 1059 (2003) Efect of Ramadan fasting on clinical and biochemical 1060 parameters in healthy adults. Annal Saudi Med 23:223-226 1061
- 115. Rahman M, Rashid M, Basher S, Sultana S, Nomani M 1062 (2004) Improved serum HDL cholesterol proile among 1063 Bangladeshi male students during Ramadan fasting. East 1064 1065 Mediterr Health J 10:131–137
- 116. Kassab S, Abdul-Ghafar T, Nagalla DS, Sachdeva U, 1066 Navar U (2004) Interactions between leptin, neuropeptide-1067 Y, and insulin with chronic diurnal fasting during Ramadan. 1068 Annal Saudi Med 24:345-349 1069
- 117. Aksungar FB, Eren A, Ure S, Teskin O, Ates G (2005) Efects of 1070 intermittent fasting on serum lipid levels, coagulation status, and 1071 plasma homocysteine levels. Ann Nutr Metab 49(2):77-82 1072
- 118. Farshidfar G, Yousi H, Vakili M, Asadi Noughabi F (2006) The 1073 efect of Ramadan fasting on hemoglobin, hematocrit, and 1074 blood biochemical parameters. J Res Health Sci 6:21-27 1075
- 119. Al-Numair N (2006) Body weight and some biochemical 1076 changes associated with Ramadan fasting in healthy 1077 Saudi men. J Med Sci 6:112-116 1078
- 120. Ziaee V, Razaei M, Ahmadinejad Z, Shaikh H, Yousei R, 1079 Yar-mohammadi L, Bozorgi F, Behjati MJ (2006) The 1080 changes of metabolic proile and weight during Ramadan 1081 fasting. Singap Med J 47:409-414 1082
- 121. Dewanti L, Watanabe C, Ohtsuka R (2006) Unexpected 1083 changes in blood pressure and hematological parameters 1084 among fasting and nonfasting workers during Ramadan in 1085 Indonesia. Eur J Clin Nutr 60:877-881 1086
- 122. Salehi M, Neghab M (2007) Efects of fasting and a medium 1087 calorie balanced diet during the holy month Ramadan on 1088 1089 weight, BMI, and some blood parameters of overweight males. Pak J Biol Sci 10:968-971 1090
- 123. Al Hourani HM, Atoum MF, Akel S, Hijjawi N, Awawdeh S 1091 (2009) Efects of Ramadan fasting on some haematological 1092 and biochemical parameters. Jordan J Biol Sci 2:103-108 1093
- 124. Mansi KMS (2007) Study the efects of Ramadan fasting on 1094 the serum glucose and lipid proile among healthy 1095 Jordanian stu-dents. Am J Appl Sci 4:565-569 1096
- 125. Moosavi S, Kabir A, Moghimi A, Chehrei A, Rad MB (2007) 1097 Evaluation of the efect of Islamic fasting on lung volumes and 1098 capacities in healthy persons. Saudi Med J 28:1666-1670 1099
- 126. Ibrahim WH, Habib HM, Jarrar AH, Al-Baz SA (2008) Efect 1100 of Ramadan fasting on markers of oxidative stress and 1101 serum bio-chemical markers of cellular damage in healthy 1102 subjects. Annal Nutr Met 53:175-181 1103
- 127. Shariatpanahi ZV, Shariatpanahi MV, Shahbazi S, Hossaini A, 1104 Abadi A (2008) Efect of Ramadan fasting on some indices of 1105 insulin resistance and components of the metabolic syndrome 1106 in healthy male adults. Br J Nutr 100:147-151 1107
- 128. Norouzy A, Salehi M, Arabi H, Shiva F, Mehrnoosh S, Mohajeri 1108 SMR, Sabery M, Frost G, Nematy M (2010) Efects of Rama-dan 1109 fasting on anthropometric indices. Fasting and Sustainable 1110 Health Conference in 2010. 65 1111
- 129. Pathan M, Patil R (2015) Efect of Ramadan fasting on body 1112 weight and lipid proile. Biomed Pharmacol J 3:167-170 1113
- 130. Ünalacak M, Kara IH, Baltaci D, Erdem Ö, Bucaktepe PGE 1114 (2011) Efects of Ramadan fasting on biochemical and hema-1115 tological parameters and cytokines in healthy and obese indi-1116 viduals. Metabo Syndr Relat Disord 9:157-161 1117
- 131. Faris M, Hussein RN, Al-Kurd RA, Al-Fararjeh MA, Bustanji YK, 1118 Mohammad MK (2012) Impact of Ramadan intermittent fasting on 1119 oxidative stress measured by urinary 15-isoprostane. J Nutr 1120 Metab. https://doi.org/10.1155/2012/802924 1121

- 132. Shehab A, Abdulle A, El Issa A, Al Suwaidi J, Nagelkerke 1122 N (2012) Favorable changes in lipid proile: the efects of 1123 fasting after Ramadan. PLoS ONE 7:e47615 1124
- 133. Agoumi A, Martinez Martinez F, Garcia de la Serrana HL 1125 (2013) The assessment of the follow-up of the Muslim 1126 popula-tion during the period of Ramadan. Nutr Food Sci. 1127 https://doi. org/10.4172/2155-9600.1000220 1128
- 134. Haouari-Oukerro F, Ben-Attia M, Kaâbachi N, Haouari M (2013) 1129 Ramadan fasting inluences on food intake consump-tion, sleep 1130 schedule, body weight, and some plasma parameters in healthy 1131 fasting volunteers. Afr J Biotech 12:3327-3332

1133

1134

1135

1136

- 135. Hosseini SRA, Sardar MA, Heiazi K, Farahati S (2013) The efect of Ramadan fasting and physical activity on body composition, serum osmolarity levels, and some parameters of electrolytes in females. Int J Endocrinol Metab 11:88-94
- 136. Rohin MAK, Rozano N, Abd Hadi N, Nor M, Nasir M, Abdul-lah S, 1137 Dandinasivara Venkateshaiah M (2013) Anthropometry and body 1138 composition status during Ramadan among higher institution 1139 learning center stafs with diferent body weight status. Sci World J. 1140 https://doi.org/10.1155/2013/308041 1141
- 137. Sayedda K, Kamal S, Ahmed QS (2013) Efect of Ramadan 1142 fasting on anthropometric parameters, blood pressure, 1143 creatine phosphokinase activity, serum calcium, and 1144 phosphorus in healthy students of Shri Ram Murti smarak 1145 institute of medi-cal sciences, Bareilly-UP. National J 1146 Physiol Pharm Pharmacol 3:48-52 1147
- 138. Cansel M, Tasolar H, Yagmur J, Ermis N, Acikgoz N, 1148 Eyyup-koca F, Pekdemir H, Ozdemir R (2014) The efects 1149 of Rama-dan fasting on heart rate variability in healthy 1150 individuals: a prospective study. Anadolu Kardiyol Derg 1151 14:413-416. https://doi.org/10.5152/akd.2014.5108 1152
- 139. Celik A, Saricicek E, Saricicek V, Sahin E, Ozdemir G, Boz-1153 kurt S, Okumus M, Sucakli MH, Cikim G, Coskun Y (2014) 1154 Efect of Ramadan fasting on serum concentration of 1155 apelin-13 and new obesity indices in healthy adult men. 1156 Medical Sci Monit 20:337–342 1157
- 140. Hassan MB, Isawumi MA (2014) Efects of fasting on 1158 intraocu-lar pressure in a black population. Middle East 1159 Afri J Ophthal 2:328–331 1160
- 141. McNeil J, Mamlouk MM, Duval K, Schwartz A, Nardo Junior N, 1161 Doucet É (2014) Alterations in metabolic proile occur in 1162 normal-weight and obese men during the Ramadan fast 1163 despite no changes in anthropometry. J Obesity 2014:482547. 1164 https:// doi.org/10.1155/2014/482547 1165
- 142. Salahuddin M, Masood-ul-Hassan J (2014) Efects of Ramadan 1166 fasting on some physiological and biochemical parameters in 1167 healthy and hypertensive subjects in Aurangabad district of 1168 Maharashtra. India J Fasting Health 2(1):7-13 1169
- 143. Begum TA, Jahan N, Sultana N, Choudhury R, Yeasmin T 1170 (2015) Efect of Ramadan fasting on total cholesterol (TC) 1171 low-density lipoprotein cholesterol (LDL-C) and high-1172 density lipoprotein cholesterol (HDL-C) in healthy adult 1173 male. J Bang-ladesh Soc Physiol 10:46-50 1174
- 144. Gnanou JV, Caszo BA, Khalil KM, Abdullah SL, Knight VF, 1175 Bidin MZ (2015) Efects of Ramadan fasting on glucose 1176 homeostasis and adiponectin levels in healthy adult 1177 males. J Diabetes Metab Disord 14:55 1178
- 145. Hosseini SRA, Hejazi K (2015) Evaluation of changes in blood hematological and biochemical parameters in response to Islamic fasting and regular physical activity in male and female subjects. J Fasting Health 3:118-125
- 146. López-Bueno M, González-Jiménez E, Navarro-Prado S, 1183 Montero-Alonso MA, Schmidt-RioValle J (2015) Influence of 1184 age and religious fasting on the body composition of 1185

1179

1180

1181

- 1186Muslim women living in a westernized context. Nutr Hosp118731:1067–1073
- 147. Suriani I, Shamsuddin K, Latif KA, Saad HA (2015) The efect of the Malaysian Food Guideline guidance on a group of overweight and obese women during Ramadan.
 1191 Saudi Med J 36:40–45
- 148. Talib RA, Canguven O, Al-Rumaihi K, Al Ansari A, Alani M
 (2015) The efect of fasting on erectile function and sexual desire
 on men in the month of Ramadan. Urol J 12:2099–2102 149.
- BaHammam AS, Pandi-Perumal SR, Alzoghaibi MA (2016) The
 efect of Ramadan intermittent fasting on lipid peroxida-tion in
 healthy young men while controlling for diet and sleep:
 a pilot study. Ann Thoracic Med 11:43–48
- 1199
 150. Ganjali N, Mozaffari-Khosravi H, Afkhami Ardakani M, Shahraki
 1200
 M, Fallahzadeh H (2016) Efect of Islamic fasting on glucose,
 1201
 1202
 1203
 1204
 1205
 1205
 1206
 1207
 1207
 1208
 1208
 1209
 1209
 1209
 1209
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1200
 1
- 1203151. Nugraha B, Ghashang SK, Hamdan I, Gutenbrunner C (2017)1204Efect of Ramadan fasting on fatigue, mood, sleepiness, and1205health-related quality of life of healthy young men in the sum-1206mertime in Germany: a prospective controlled study. Appetite1207111:38–45. https://doi.org/10.1016/j.appet.2016.12.030
- 1208 152. AbdulKareem NG, Khalil NS, Jasim AE, Alkabban M (2017)
 1209 Some biochemical changes during summer Islamic fasting
 1210 in diseased patients in comparison with normal. Am J Med
 1211 Sci 5:27–34
- 1212153. Bakki B, Goni BW, HarunaYusuph FB (2017) Ramadan Fast-
ing: Efect on the Metabolic Proile of Healthy Medical Stu-dents
in the northeast, Nigeria. Saudi J Med. 133–137
- 1215 154. Khan N, Rasheed A, Ahmed H, Aslam F, Kanwal F (2017)
 1216 Effect of Ramadan fasting on glucose level, lipid profile,
 1217 HbA1c, and uric acid among medical students in Karachi,
 1218 Pakistan. East Mediter Health J 23:274–279
- 1219 155. Kiyani MM, Memon AR, Amjad MI, Ameer MR, Sadiq M,
 1220 Mahmood T (2017) Study of human Biochemical parameters
 1221 during and after Ramadan. J Relig Health 56:55–62

- 156. Latiri I, Sandid S, Fennani MA, Hadrich M, Masmoudi T, Maatoug C, Zammit-Chatti M, Chamari K, Ben Saad H (2017) The efects of Ramadan fasting on the spirometric data of healthy adult males. Am J Men's Health 11:1214– 1223. https://doi.org/10.1177/1557988316675091 1226
- 157. Ongsara S, Boonpol S, Prompalad N, Jeenduang N (2017) The efect of Ramadan fasting on biochemical parameters in healthy Thai subjects. J Clin Diagn Res 11:CD14–CE18 1229
- 158. Roy AS, Bandyopadhyay A (2017) Efect of Ramadan intermit-tent fasting on haematological parameters, lipid proile, and renal markers in young Muslim males of Kolkata, India. Indian J Physiol Pharmacol 61:361–367 1233
- 159. Haghighi S, Attarzade Hosseini SR, Saleh Moghaddam M, Rajabian M, Kiani MA, Taghizade Moghaddam H, Sezavar Kamali SM (2019) Efects of fasting on glucagon-like peptide-1 hormone (GLP-1), and lipid proile indices in obese and thin women. Int J Pediatr 7:9095–9102
 1234 1235 1236 1237 1238
- 160. Jarrar AH, Beasley JM, Ohuma EO, Cheikh Ismail L, Qeshta DA, Mohamad MN, Al Dhaheri AS (2019) Efect of high iber cereal intake on satiety and gastrointestinal symptoms during Ramadan. Nutrients 11:939. https://doi.org/10.3390/nu110 40939
- 161. Rahbar AR, Safavi E, Rooholamini M, Jaafari F, Darvishi S, Rahbar A (2019) Efects of intermittent fasting during Rama-dan on insulin - like growth factor-1, interleukin 2, and lipid proile in healthy Muslims. Int J Prev Med 10:7. https://doi. org/10.4103/ijpvm.IJPVM 252 17
- 162. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560
 1249
- 163. Deeks JJ, Higgins JP, Altman DG (2008) Analysing data and
undertaking meta-analyses. Cochrane handbook for systematic
reviews of interventions: Cochrane book series:243–2961251
1253