4 research outputs found

    Triple F-a comet nucleus sample return mission

    No full text
    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA’s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.ISSN:0922-6435ISSN:1572-950

    Temperature, Clouds, and Aerosols in the Terrestrial Bodies of the Solar System

    No full text
    International audienceThis chapter is intended to provide a concise overview of the state of knowledge regarding the temperature, clouds, and aerosols of the terrestrial bodies of our Solar System, namely Mars, Venus, and Titan. These bodies are the planetary objects that most resemble the Earth. The atmosphere of each body is described in terms of composition and vertical structure. We distinguish and compare the extent of the various atmospheric compartments that form the atmospheric column, from the troposphere up to the thermosphere. The temperature structure is then presented, and the main causes known for explaining its variations on each body are listed. The specific roles of waves, radiation, as well as convection in shaping temperature profiles are then discussed. In a second part, the particulate components of these atmospheres, clouds and aerosols, are described in terms of their physical properties (composition, optical properties) and of their variability in both space and time. Mars , Venus, and Titan exhibit a remarkable variety of clouds and aerosols. Our knowledge about them has made considerable progress thanks to the success of space missions during the last two decades, while in parallel theoretical models have improved to the point that three-dimensional Global Climate Models now include the detailed physics of clouds and aerosols. As a result, it is now widely recognized that particulates play a key role in forcing the climate and the evolution of these bodies
    corecore