22 research outputs found

    Oxy-fuel combustion of coal and biomass blends

    Get PDF
    The ignition temperature, burnout and NO emissions of blends of a semi-anthracite and a high-volatile bituminous coal with 10 and 20 wt.% of olive waste were studied under oxy-fuel combustion conditions in an entrained flow reactor (EFR). The results obtained under several oxy-fuel atmospheres (21%O2–79%CO2, 30%O2–70%CO2 and 35%O2–65%CO2) were compared with those attained in air. The results indicated that replacing N2 by CO2 in the combustion atmosphere with 21% of O2 caused an increase in the temperature of ignition and a decrease in the burnout value. When the O2 concentration was increased to 30 and 35%, the temperature of ignition was lower and the burnout value was higher than in air conditions. A significant reduction in ignition temperature and a slight increase in the burnout value was observed after the addition of biomass, this trend becoming more noticeable as the biomass concentration was increased. The emissions of NO during oxy-fuel combustion were lower than under air-firing. However, they remained similar under all the oxy-fuel atmospheres with increasing O2 concentrations. Emissions of NO were significantly reduced by the addition of biomass to the bituminous coal, although this effect was less noticeable in the case of the semi-anthracite.This work was carried out with financial support from the Spanish MICINN (Project PS-120000-2005-2) co-financed by the European Regional Development Fund. M.V.G. and L.A. acknowledge funding from the CSIC JAE-Doc and CSIC JAE-Pre programs, respectively, co-financed by the European Social Fund. J.R. acknowledges funding from the Government of the Principado de Asturias (Severo Ochoa program).Peer reviewe

    An integer linear programming model for binary knapsack problem with dependent item values

    No full text
    Binary Knapsack Problem (BKP) is to select a subset of items with the highest value while keeping the size within the capacity of the knapsack. This paper presents an Integer Linear Programming (ILP) model for a variation of BKP where the value of an item may depend on presence or absence of other items in the knapsack. Strengths of such Value-Related Dependencies are assumed to be imprecise and hard to specify. To capture this imprecision, we have proposed modeling value-related dependencies using fuzzy graphs and their algebraic structure. We have demonstrated through simulations that our proposed ILP model is scalable to large number of items
    corecore