14 research outputs found

    Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells

    Get PDF
    The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals

    Two Host Factors Regulate Persistence of H7a-Specific T Cells Injected in Tumor-Bearing Mice

    Get PDF
    BACKGROUND: Injection of CD8 T cells primed against immunodominant minor histocompatibility antigens (MiHA) such as H7(a) can eradicate leukemia and solid tumors. To understand why MiHA-targeted T cells have such a potent antitumor effect it is essential to evaluate their in vivo behavior. In the present work, we therefore addressed two specific questions: what is the proliferative dynamics of H7(a)-specifc T cells in tumors, and do H7(a)-specific T cells persist long-term after adoptive transfer? METHODOLOGY/PRINCIPAL FINDINGS: By day 3 after adoptive transfer, we observed a selective infiltration of melanomas by anti-H7(a) T cells. Over the next five days, anti-H7(a) T cells expanded massively in the tumor but not in the spleen. Thus, by day 8 after injection, anti-H7(a) T cells in the tumor had undergone more cell divisions than those in the spleen. These data strongly suggest that anti-H7(a) T cells proliferate preferentially and extensively in the tumors. We also found that two host factors regulated long-term persistence of anti-H7(a) memory T cells: thymic function and expression of H7(a) by host cells. On day 100, anti-H7(a) memory T cells were abundant in euthymic H7(a)-negative (B10.H7(b)) mice, present in low numbers in thymectomized H7(a)-positive (B10) hosts, and undetectable in euthymic H7(a)-positive recipients. CONCLUSIONS/SIGNIFICANCE: Although in general the tumor environment is not propitious to T-cell invasion and expansion, the present work shows that this limitation may be overcome by adoptive transfer of primed CD8 T cells targeted to an immunodominant MiHA (here H7(a)). At least in some cases, prolonged persistence of adoptively transferred T cells may be valuable for prevention of late cancer relapse in adoptive hosts. Our findings therefore suggest that it may be advantageous to target MiHAs with a restricted tissue distribution in order to promote persistence of memory T cells and thereby minimize the risk of cancer recurrence

    Cytomegalovirus-Induced Expression of CD244 after Liver Transplantation Is Associated with CD8(+) T Cell Hyporesponsiveness to Alloantigen

    No full text
    The chronic presence of viral Ags can induce T cell exhaustion, which is characterized by upregulation of coinhibitory receptors and loss of T cell function. We studied whether a similar phenomenon occurs after liver transplantation (LTx), when there is continuous exposure to alloantigen. Expression of coinhibitory receptors on circulating CD4(+) and CD8(+) T cells was analyzed longitudinally in 19 patients until 6 mo after LTx and cross-sectionally in 38 patients late (1-12 y) after LTx. Expression of the coinhibitory receptors CD160 and CD244 on circulating CD8(+) T cells was already higher 6 mo after LTx compared with pre-LTx, and the elevated expression was sustained late after LTx, with CD244 showing the more prominent increase. The strongest upregulation of CD244 on circulating CD8(+) T cells was observed in patients who experienced CMV infection after LTx. CMV infection also was associated with reduced CD8(+) T cell proliferation and cytotoxic degranulation in response to alloantigen late after LTx. Purified CD244(+)CD8(+) T cells from LTx patients showed lower proliferative responses to alloantigen, as well as to polyclonal stimulation, than did their CD244(-) counterparts. In addition, the CD244(+)CD8(+) T cell population contained the majority of CMV peptide-loaded MHC class I tetramer-binding cells. In conclusion, CMV infection after LTx, rather than persistence of alloantigen, induces the accumulation of dysfunctional CD244(+)CD8(+) T cells in the circulation that persist long-term, resulting in reduced frequencies of circulating alloreactive CD8(+) T cells. These results suggest that CMV infection restrains CD8(+) T cell alloresponses after LTx

    Peripheral and systemic antigens elicit an expandable pool of resident memory CD8(+) T cells in the bone marrow

    Get PDF
    BM has been put forward as a major reservoir for memory CD8+  T cells. In order to fulfill that function, BM should "store" memory CD8+ T cells, which in biological terms would require these "stored" memory cells to be in disequilibrium with the circulatory pool. This issue is a matter of ongoing debate. Here, we unequivocally demonstrate that murine and human BM harbors a population of tissue-resident memory CD8+ T (TRM ) cells. These cells develop against various pathogens, independently of BM infection or local antigen recognition. BM CD8+ TRM cells share a transcriptional program with resident lymphoid cells in other tissues; they are polyfunctional cytokine producers and dependent on IL-15, Blimp-1, and Hobit. CD8+ TRM cells reside in the BM parenchyma, but are in close contact with the circulation. Moreover, this pool of resident T cells is not size-restricted and expands upon peripheral antigenic re-challenge. This works extends the role of the BM in the maintenance of CD8+ T cell memory to include the preservation of an expandable reservoir of functional, non-recirculating memory CD8+ T cells, which develop in response to a large variety of peripheral antigens
    corecore