6 research outputs found

    It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres

    Get PDF
    Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas

    Predictors of Parent Responsiveness to 1-Year-Olds At-Risk for Autism Spectrum Disorder

    No full text
    Parent responsiveness is critical for child development of cognition, social-communication, and self-regulation. Parents tend to respond more frequently when children at-risk for autism spectrum disorder (ASD) demonstrate stronger social-communication; however, it is unclear how responsiveness is associated with sensory characteristics of children at-risk for ASD. To address this issue, we examined the extent to which child social-communication and sensory reactivity patterns (i.e., hyper- and hypo-reactivity) predicted parent responsiveness to 1-year-olds at-risk for ASD in a community sample of 97 parent-infant pairs. A combination of child social-communication and sensory hypo-reactivity consistently predicted how parents played and talked with their 1-year-old at-risk for ASD. Parents tended to talk less and use more play actions when infants communicated less and demonstrated stronger hypo-reactivity

    Divine Understanding and the Divided Brain

    No full text
    corecore