17 research outputs found

    Foxf2: A Novel Locus for Anterior Segment Dysgenesis Adjacent to the Foxc1 Gene

    Get PDF
    Anterior segment dysgenesis (ASD) is characterised by an abnormal migration of neural crest cells or an aberrant differentiation of the mesenchymal cells during the formation of the eye's anterior segment. These abnormalities result in multiple tissue defects affecting the iris, cornea and drainage structures of the iridocorneal angle including the ciliary body, trabecular meshwork and Schlemm's canal. In some cases, abnormal ASD development leads to glaucoma, which is usually associated with increased intraocular pressure. Haploinsufficiency through mutation or chromosomal deletion of the human FOXC1 transcription factor gene or duplications of the 6p25 region is associated with a spectrum of ocular abnormalities including ASD. However, mapping data and phenotype analysis of human deletions suggests that an additional locus for this condition may be present in the same chromosomal region as FOXC1. DHPLC screening of ENU mutagenised mouse archival tissue revealed five novel mouse Foxf2 mutations. Re-derivation of one of these (the Foxf2W174R mouse lineage) resulted in heterozygote mice that exhibited thinning of the iris stroma, hyperplasia of the trabecular meshwork, small or absent Schlemm's canal and a reduction in the iridocorneal angle. Homozygous E18.5 mice showed absence of ciliary body projections, demonstrating a critical role for Foxf2 in the developing eye. These data provide evidence that the Foxf2 gene, separated from Foxc1 by less than 70 kb of genomic sequence (250 kb in human DNA), may explain human abnormalities in some cases of ASD where FOXC1 has been excluded genetically

    Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes

    Get PDF
    While numerous studies have implicated copy number variants (CNVs) in a range of neurological phenotypes, the impact relative to disease severity has been difficult to ascertain due to small sample sizes, lack of phenotypic details, and heterogeneity in platforms used for discovery. Using a customized microarray enriched for genomic hotspots, we assayed for large CNVs among 1,227 individuals with various neurological deficits including dyslexia (376), sporadic autism (350), and intellectual disability (ID) (501), as well as 337 controls. We show that the frequency of large CNVs (>1 Mbp) is significantly greater for ID–associated phenotypes compared to autism (p = 9.58×10−11, odds ratio = 4.59), dyslexia (p = 3.81×10−18, odds ratio = 14.45), or controls (p = 2.75×10−17, odds ratio = 13.71). There is a striking difference in the frequency of rare CNVs (>50 kbp) in autism (10%, p = 2.4×10−6, odds ratio = 6) or ID (16%, p = 3.55×10−12, odds ratio = 10) compared to dyslexia (2%) with essentially no difference in large CNV burden among dyslexia patients compared to controls. Rare CNVs were more likely to arise de novo (64%) in ID when compared to autism (40%) or dyslexia (0%). We observed a significantly increased large CNV burden in individuals with ID and multiple congenital anomalies (MCA) compared to ID alone (p = 0.001, odds ratio = 2.54). Our data suggest that large CNV burden positively correlates with the severity of childhood disability: ID with MCA being most severely affected and dyslexics being indistinguishable from controls. When autism without ID was considered separately, the increase in CNV burden was modest compared to controls (p = 0.07, odds ratio = 2.33)

    Drug discovery in ophthalmology: past success, present challenges, and future opportunities

    Get PDF
    BACKGROUND: Drug discovery has undergone major transformations in the last century, progressing from the recognition and refinement of natural products with therapeutic benefit, to the systematic screening of molecular libraries on whole organisms or cell lines and more recently to a more target-based approach driven by greater knowledge of the physiological and pathological pathways involved. Despite this evolution increasing challenges within the drug discovery industry are causing escalating rates of failure of development pipelines. DISCUSSION: We review the challenges facing the drug discovery industry, and discuss what attempts are being made to increase the productivity of drug development, including a refocusing on the study of the basic biology of the disease, and an embracing of the concept of ‘translational research’. We consider what ophthalmic drug discovery can learn from the sector in general and discuss strategies to overcome the present limitations. This includes advances in the understanding of the pathogenesis of disease; improvements in animal models of human disease; improvements in ophthalmic drug delivery and attempts at patient stratification within clinical trials. SUMMARY: As we look to the future, we argue that investment in ophthalmic drug development must continue to cover the whole translational spectrum (from ‘bench to bedside and back again’) with recognition that both biological discovery and clinical understanding will drive drug discovery, providing safe and effective therapies for ocular disease

    Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma

    No full text
    Background Primary congenital glaucoma (PCG) and early onset glaucomas are one of the major causes of children and young adult blindness worldwide. Both autosomal recessive and dominant inheritance have been described with involvement of several genes including CYP1B1, FOXC1, PITX2, MYOC and PAX6. However, mutations in these genes explain only a small fraction of cases suggesting the presence of further candidate genes. Methods To elucidate further genetic causes of these conditions whole exome sequencing (WES) was performed in an Italian patient, diagnosed with PCG and retinal detachment, and his unaffected parents. Sanger sequencing of the complete coding region of COL1A1 was performed in a total of 26 further patients diagnosed with PCG or early onset glaucoma. Exclusion of pathogenic variations in known glaucoma genes as CYP1B1, MYOC, FOXC1, PITX2 and PAX6 was additionally done per Sanger sequencing and Multiple Ligation-dependent Probe Amplification (MLPA) analysis. Results In the patient diagnosed with PCG and retinal detachment, analysis of WES data identified compound heterozygous variants in COL1A1 (p.Met264Leu; p.Ala1083Thr). Targeted COL1A1 screening of 26 additional patients detected three further heterozygous variants (p.Arg253*, p.Gly767Ser and p.Gly154Val) in three distinct subjects: two of them diagnosed with early onset glaucoma and mild form of osteogenesis imperfecta (OI), one patient with a diagnosis of PCG at age 4 years. All five variants affected evolutionary, highly conserved amino acids indicating important functional restrictions. Molecular modeling predicted that the heterozygous variants are dominant in effect and affect protein stability and thus the amount of available protein, while the compound heterozygous variants act as recessive alleles and impair binding affinity to two main COL1A1 binding proteins: Hsp47 and fibronectin. Conclusions Dominant inherited mutations in COL1A1 are known causes of connective tissues disorders such as OI. These disorders are also associated with different ocular abnormalities, although recognition of the common pathology for both features is seldom being recognized. Our results expand the role of COL1A1 mutations in different forms of early-onset glaucoma with and without signs of OI. Thus, we suggest including COL1A1 mutation screening in the genetic work-up of glaucoma cases and detailed ophthalmic examinations with fundus analysis in patients with OI

    Axenfeld–Rieger syndrome and spectrum of PITX2 and FOXC1 mutations

    No full text
    Axenfeld–Rieger syndrome (ARS) is a rare autosomal dominant disorder, which encompasses a range of congential malformations affecting the anterior segment of the eye. ARS shows genetic heterogeneity and mutations of the two genes, PITX2 and FOXC1, are known to be associated with the pathogenesis. There are several excellent reviews dealing with the complexity of the phenotype and genotype of ARS. In this study, we will attempt to give a brief review of the clinical features and the relevant diagnostic approaches, together with a detailed review of published PITX2 and FOXC1 mutations
    corecore