338 research outputs found

    Membrane Porters of ATP-Binding Cassette Transport Systems Are Polyphyletic

    Get PDF
    The ATP-binding cassette (ABC) superfamily consists of both importers and exporters. These transporters have, by tradition, been classified according to the ATP hydrolyzing constituents, which are monophyletic. The evolutionary origins of the transmembrane porter proteins/domains are not known. Using five distinct computer programs, we here provide convincing statistical data suggesting that the transmembrane domains of ABC exporters are polyphyletic, having arisen at least three times independently. ABC1 porters arose by intragenic triplication of a primordial two-transmembrane segment (TMS)-encoding genetic element, yielding six TMS proteins. ABC2 porters arose by intragenic duplication of a dissimilar primordial three-TMS-encoding genetic element, yielding a distinctive protein family, nonhomologous to the ABC1 proteins. ABC3 porters arose by duplication of a primordial four-TMS-encoding genetic element, yielding either eight- or 10-TMS proteins. We assign each of 48 of the 50 currently recognized families of ABC exporters to one of the three evolutionarily distinct ABC types. Currently available high-resolution structural data for ABC porters are fully consistent with our findings. These results provide guides for future structural and mechanistic studies of these important transport systems

    Biophysical Studies of the Membrane-Embedded and Cytoplasmic Forms of the Glucose-Specific Enzyme II of the E. coli Phosphotransferase System (PTS)

    Get PDF
    The glucose Enzyme II transporter complex of the Escherichia coli phosphotransferase system (PTS) exists in at least two physically distinct forms: a membrane-integrated dimeric form, and a cytoplasmic monomeric form, but little is known about the physical states of these enzyme forms. Six approaches were used to evaluate protein-protein and protein-lipid interactions in this system. Fluorescence energy transfer (FRET) using MBP-IIGlc-YFP and MBP-IIGlc-CFP revealed that the homodimeric Enzyme II complex in cell membranes is stable (FRET-) but can be dissociated and reassociated to the heterodimer only in the presence of Triton X100 (FRET+). The monomeric species could form a heterodimeric species (FRET+) by incubation and purification without detergent exposure. Formaldehyde cross linking studies, conducted both in vivo and in vitro, revealed that the dimeric MBP-IIGlc activity decreased dramatically with increasing formaldehyde concentrations due to both aggregation and activity loss, but that the monomeric MBP-IIGlc retained activity more effectively in response to the same formaldehyde treatments, and little or no aggregation was observed. Electron microscopy of MBP-IIGlc indicated that the dimeric form is larger than the monomeric form. Dynamic light scattering confirmed this conclusion and provided quantitation. NMR analyses provided strong evidence that the dimeric form is present primarily in a lipid bilayer while the monomeric form is present as micelles. Finally, lipid analyses of the different fractions revealed that the three lipid species (PE, PG and CL) are present in all fractions, but the monomeric micellar structure contains a higher percentage of anionic lipids (PG & CL) while the dimeric bilayer form has a higher percentage of zwitterion lipids (PE). Additionally, evidence for a minor dimeric micellar species, possibly an intermediate between the monomeric micellar and the dimeric bilayer forms, is presented. These results provide convincing evidence for interconvertible physical forms of Enzyme-IIGlc

    Bioinformatic Characterization of P-Type ATPases Encoded Within the Fully Sequenced Genomes of 26 Eukaryotes

    Get PDF
    P-type ATPases play essential roles in numerous processes, which in humans include nerve impulse propagation, relaxation of muscle fibers, secretion and absorption in the kidney, acidification of the stomach and nutrient absorption in the intestine. Published evidence suggests that uncharacterized families of P-type ATPases with novel specificities exist. In this study, the fully sequenced genomes of 26 eukaryotes, including animals, plants, fungi and unicellular eukaryotes, were analyzed for P-type ATPases. We report the organismal distributions, phylogenetic relationships, probable topologies and conserved motifs of nine functionally characterized families and 13 uncharacterized families of these enzyme transporters. We have classified these proteins according to the conventions of the functional and phylogenetic IUBMB-approved transporter classification system (www.tcdb.org, Saier et al. in Nucleic Acids Res 34:181–186, 2006; Nucleic Acids Res 37:274–278, 2009)

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    The Bacterial Intimins and Invasins: A Large and Novel Family of Secreted Proteins

    Get PDF
    Gram-negative bacteria have developed a limited repertoire of solutions for secreting proteins from the cytoplasmic compartment to the exterior of the cell. Amongst the spectrum of secreted proteins are the intimins and invasins (the Int/Inv family; TC# 1.B.54) which are characterized by an N-terminal β-barrel domain and a C-terminal surface localized passenger domain. Despite the important role played by members of this family in diseases mediated by several species of the Enterobacteriaceae, there has been little appreciation for the distribution and diversity of these proteins amongst Gram-negative bacteria. Furthermore, there is little understanding of the molecular events governing secretion of these proteins to the extracellular milieu.In silico approaches were used to analyze the domain organization and diversity of members of this secretion family. Proteins belonging to this family are predominantly associated with organisms from the γ-proteobacteria. Whilst proteins from the Chlamydia, γ-, β- and ε-proteobacteria possess β-barrel domains and passenger domains of various sizes, Int/Inv proteins from the α-proteobacteria, cyanobacteria and chlorobi possess only the predicted β-barrel domains. Phylogenetic analyses revealed that with few exceptions these proteins cluster according to organismal type, indicating that divergence occurred contemporaneously with speciation, and that horizontal transfer was limited. Clustering patterns of the β-barrel domains correlate well with those of the full-length proteins although the passenger domains do so with much less consistency. The modular subdomain design of the passenger domains suggests that subdomain duplication and deletion have occurred with high frequency over evolutionary time. However, all repeated subdomains are found in tandem, suggesting that subdomain shuffling occurred rarely if at all. Topological predictions for the β-barrel domains are presented.Based on our in silico analyses we present a model for the biogenesis of these proteins. This study is the first of its kind to describe this unusual family of bacterial adhesins

    Functional discrimination of membrane proteins using machine learning techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Discriminating membrane proteins based on their functions is an important task in genome annotation. In this work, we have analyzed the characteristic features of amino acid residues in membrane proteins that perform major functions, such as channels/pores, electrochemical potential-driven transporters and primary active transporters.</p> <p>Results</p> <p>We observed that the residues Asp, Asn and Tyr are dominant in channels/pores whereas the composition of hydrophobic residues, Phe, Gly, Ile, Leu and Val is high in electrochemical potential-driven transporters. The composition of all the amino acids in primary active transporters lies in between other two classes of proteins. We have utilized different machine learning algorithms, such as, Bayes rule, Logistic function, Neural network, Support vector machine, Decision tree etc. for discriminating these classes of proteins. We observed that most of the algorithms have discriminated them with similar accuracy. The neural network method discriminated the channels/pores, electrochemical potential-driven transporters and active transporters with the 5-fold cross validation accuracy of 64% in a data set of 1718 membrane proteins. The application of amino acid occurrence improved the overall accuracy to 68%. In addition, we have discriminated transporters from other α-helical and β-barrel membrane proteins with the accuracy of 85% using k-nearest neighbor method. The classification of transporters and all other proteins (globular and membrane) showed the accuracy of 82%.</p> <p>Conclusion</p> <p>The performance of discrimination with amino acid occurrence is better than that with amino acid composition. We suggest that this method could be effectively used to discriminate transporters from all other globular and membrane proteins, and classify them into channels/pores, electrochemical and active transporters.</p

    Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen stimulation of immune cells triggers Ca<sup>2+ </sup>entry through Ca<sup>2+ </sup>release-activated Ca<sup>2+ </sup>(CRAC) channels, promoting an immune response to pathogens. Defects in a CRAC (Orai) channel in humans gives rise to the hereditary Severe Combined Immune Deficiency (SCID) syndrome. We here report results that define the evolutionary relationship of the CRAC channel proteins of animals, and the ubiquitous Cation Diffusion Facilitator (CDF) carrier proteins.</p> <p>Findings</p> <p>CDF antiporters derived from a primordial 2 transmembrane spanner (TMS) hairpin structure by intragenic triplication to yield 6 TMS proteins. Four programs (IC/GAP, GGSEARCH, HMMER and SAM) were evaluated for identifying sequence similarity and establishing homology using statistical means. Overall, the order of sensitivity (similarity detection) was IC/GAP = GGSEARCH > HMMER > SAM, but the use of all four programs was superior to the use of any two or three of them. Members of the CDF family appeared to be homologous to members of the 4 TMS Orai channel proteins.</p> <p>Conclusions</p> <p>CRAC channels derived from CDF carriers by loss of the first two TMSs of the latter. Based on statistical analyses with multiple programs, TMSs 3-6 in CDF carriers are homologous to TMSs 1-4 in CRAC channels, and the former was the precursor of the latter. This is an unusual example of how a functionally and structurally more complex protein may have predated a simpler one.</p

    A short update on the structure of drug binding sites on neurotransmitter transporters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dopamine (DAT), noradrenalin (NET) and serotonin (SERT) transporters are molecular targets for different classes of psychotropic drugs. Cocaine and the SSRI (<it>S</it>)-citalopram block neurotransmitter reuptake competitively, but while cocaine is a non-selective reuptake inhibitor, (<it>S</it>)-citalopram is a selective SERT inhibitor.</p> <p>Findings</p> <p>Here we present comparisons of the binding sites and the electrostatic potential surfaces (EPS) of DAT, NET and SERT homology models based on two different LeuT<sub>Aa </sub>templates; with a substrate (leucine) in an occluded conformation (PDB id <ext-link ext-link-id="2a65" ext-link-type="pdb">2a65</ext-link>), and with an inhibitor (tryptophan) in an open-to-out conformation (PDB id <ext-link ext-link-id="3f3a" ext-link-type="pdb">3f3a</ext-link>). In the occluded homology models, two conserved aromatic amino acids (tyrosine and phenylalanine) formed a gate between the putative binding pockets, and this contact was interrupted in the open to out conformation. The EPS of DAT and NET were generally negative in the vestibular area, whereas the EPS of the vestibular area of SERT was more neutral.</p> <p>Conclusions</p> <p>The findings presented here contribute as an update on the structure of the binding sites of DAT, NET and SERT. The updated models, which have larger ligand binding site areas than models based on other templates, may serve as improved tools for virtual ligand screening.</p

    Mycobacterium tuberculosis Rv2419c, the missing glucosyl-3-phosphoglycerate phosphatase for the second step in methylglucose lipopolysaccharide biosynthesis

    Get PDF
    Mycobacteria synthesize intracellular methylglucose lipopolysaccharides (MGLP) proposed to regulate fatty acid synthesis. Although their structures have been elucidated, the identity of most biosynthetic genes remains unknown. The first step in MGLP biosynthesis is catalyzed by a glucosyl-3-phosphoglycerate synthase (GpgS, Rv1208 in Mycobacterium tuberculosis H37Rv). However, a typical glucosyl-3-phosphoglycerate phosphatase (GpgP, EC3.1.3.70) for dephosphorylation of glucosyl-3-phosphoglycerate to glucosylglycerate, was absent from mycobacterial genomes. We purified the native GpgP from Mycobacterium vanbaalenii and identified the corresponding gene deduced from amino acid sequences by mass spectrometry. The M. tuberculosis ortholog (Rv2419c), annotated as a putative phosphoglycerate mutase (PGM, EC5.4.2.1), was expressed and functionally characterized as a new GpgP. Regardless of the high specificity for glucosyl-3-phosphoglycerate, the mycobacterial GpgP is not a sequence homolog of known isofunctional GpgPs. The assignment of a new function in M. tuberculosis genome expands our understanding of this organism's genetic repertoire and of the early events in MGLP biosynthesis
    corecore